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Ignoring edge directionality and considering the graph as undirected is a common approach to detect 
communities in directed networks. However, it’s not a meaningful way due to the loss of information 
captured by the edge property. Even if Leicht and Newman extended the original modularity to a directed 
version to address this issue, the problem of distinguishing the directionality of the edges still exists 
in maximizing modularity algorithms. To this direction, we extend one of the most famous scalable 
algorithms, namely label propagation algorithm (LPA), to a directed case, which can recognize the flow 
direction among nodes. To explore what properties the directed modularity should have, we also use 
another directed modularity, called LinkRank, and provide an empirical study. The experimental results 
on both real and synthetic networks demonstrate that the proposed directed extension algorithms can 
not only make use of the edge directionality but also keeps the same time complexity as LPA.

© 2018 Published by Elsevier B.V.
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1. Introduction

Complex networks appear in the real world widely and its the-
ory provides a new view to study the complex system. As the 
building blocks of complex networks, community structure has at-
tracted much interest throughout the recent years. However, the 
research progress of the community detection in directed and 
undirected networks makes a big difference. The main focus of 
the current research is on undirected graphs. As Santo Fortunato 
stated that developing methods of community detection for di-
rected graphs is a hard task [1]. A common approach is to ignore 
the direction of the link and run the algorithms designed for undi-
rected networks, largely due to no other better options. Thus the 
potentially useful information of the edge directions is discarded 
and the meaningful communities are also missed.

To tackle the above problem, Leicht and Newman extended the 
original modularity [2] to a directed version [3] and defined as 
below:

D Q = 1

m

∑
i j

[Aij − kin
i kout

j

m
]δ(ci ,c j) (1)

where A is the adjacency matrix of the network, kin
i and kout

j are 
the in- and out-degree of the vertices.

Directed modularity (DQ) takes both the edges within com-
munities and the edge direction into consideration. The crucial 
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point is that an edge from a low out-degree but high in-degree 
node to an opposite case node should be considered a bigger sur-
prise than vice versa. However, the above idea is not fully realized. 
Kim et al. [4] observed that DQ cannot properly discriminate the 
direction of the edges. They proposed a new directed modular-
ity, called LinkRank modularity (LQ), which is similar to Google’s 
PageRank algorithm [5]. The community is defined as a group of 
nodes where a random walk prefers to stay. The contribution of an 
edge (i, j) to community formation can be defined as:

Li j = πi Gi j (2)

where πi is the i-th element of PageRank vector, Gij is the element 
of Google matrix.

The definition of this directed modularity can be abstracted as 
below:

L Q = (fraction of time for walking within communities)

− (expected value of this fraction)
(3)

Therefore, the directed modularity can be expressed as:

L Q =
∑

i j

[Li j − πiπ j]δ(ci ,c j) (4)

where πiπ j is the expected probability for a walk moving from i
to j.

Although DQ is more highly cited, LQ is a pretty stricter crite-
rion. They will be both used to evaluate the identified communities 
and make a comparison.
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This paper tries to explore a heuristic way for LPA to make good 
use of the directionality. Considering the direction of arcs when 
detecting community is meaningful, and as far as I know, very few 
works were dedicated to this topic. By transforming the edge di-
rection into an edge weight, the modified LPA can identify the local 
flow direction. For a linear complexity, we don’t do many changes 
to LPA, just resetting the label choosing rule. To demonstrate the 
extensibility of directed LPA, we propose a constrained directed 
label propagation algorithm (CDLPA), which adopts a strategy to 
alleviate the over propagation problem of LPA. Furthermore, to ex-
plore what properties the directed modularity should have, we 
make a full comparison between the directed modularity (DQ) and 
LinkRank (LQ).

In the next section, the theory of the original label propagation 
and its drawbacks are discussed. Section 3 explains and justifies 
the design of our algorithms. In section 4, we present the results of 
experiments that show how the proposed algorithms behave and 
measure their performance, comparing these with other commu-
nity detection algorithms. Our conclusions appear in section 5.

2. Label propagation algorithm

2.1. The original label propagation algorithm

Label propagation algorithm [6] is one of the fastest algorithms 
in community detection for undirected networks. It can compute 
communities for large-scale networks and be coded with a few 
lines on individual computers, which is true only for a few algo-
rithms in the literature. LPA only considers the topology, requiring 
less extra information about the network. It works as follows:

Step1: Initializing each node with a unique label.
Step2: Every node chooses a label among its neighbors based on 

the frequency of occurrence.
Step3: If the distribution of the labels reach a steady state, then 

stop the algorithm, or back to Step2.

Finally, compute communities by the identical labels.
The label choosing principle is expressed as below:

lnew
v = argmax

l
|Nl(v)| (5)

where v is a node, l denotes the label of a node, Nv is the neigh-
bors of v .

2.2. Over propagation and giant community

One of the most obvious drawbacks of LPA is the over propa-
gation problem. The main reason behind the over propagation is 
the rapid and aggressive expansion of the core of some commu-
nities. The less extensible cores or weaker communities have little 
chance to grow and even are swallowed by other communities. The 
extreme case of the over propagation is one giant community, di-
viding all the nodes into one class. However, comparing with other 
cases, the one giant community is not so bad. It at least tells you 
the community detection failed in this attempt and you need an-
other try.

The over propagation phenomenon exists in both undirected 
and directed community detections. To alleviate this problem, in 
the following sections, we adopt a strategy in the paper [7], which 
designs a growth capacity for communities, starting from a small 
capacity and increasing it over iterations. The over propagation 
phenomenon exists in both undirected and directed community 
detection. To alleviate this problem, in the following sections, we 
adopt a strategy in the paper [7], which designs a growth capac-
ity for communities, starting from a small capacity and increasing 
it over iterations.
Fig. 1. Nodes A, B , A′ , and B ′ are four nodes in a directed binary network. The out-
and in-degree of nodes are iout

A = iout
A′ = iin

B = iin
B ′ = 3 and iin

A = iin
A′ = iout

B = iout
B ′ = 1.

3. Directed extensions of label propagation algorithm

Based on the above observations, a heuristic algorithm, called 
Directed LPA, is proposed. To demonstrate its extensibility, we put 
forward a constrained Directed LPA.

3.1. Directed label propagation algorithm (DLPA)

As mentioned earlier, the inspiration of DLPA comes from the 
thoughts of directed modularity (DQ). In Fig. 1, according to the 
original idea of DQ, E B A (edge B → A) should contribute more 
to modularity than E A′ B ′ (edge A′ → B ′). However, DQ may not 
work as expected. According to Eq. (1), we calculate the directed 
modularity of E B A and E A′ B ′ as below:

D Q B A = 1

M
[0 − kin

A kout
B

M
] + 1

M
[1 − kin

B kout
A

M
] = 1

M
(1 − 10

M
) (6)

D Q A′ B ′ = 1

M
[1 − kin

A′kout
B ′

M
] + 1

M
[kin

B ′kout
A′

M
] = 1

M
(1 − 10

M
) (7)

It is obvious that DQ fails to distinguish the local flow direc-
tion and this may lead to not proper evaluation of the network 
structure. For the directed network community detection, it is nec-
essary to take into account the direction of links. To this direction, 
we design a weight calculation rule for each edge:

1 − Eout
s ∗ Ein

t

ks ∗ kt
(8)

where Eout
s is the out-degree of the source node, Ein

t is the in-
degree of the target node, ks is the degree of source code, and kt

is the degree of target node.
We can also rewrite this strategy for each node to embed it in 

iterative computation. It can be written as below:

lnew
i = argmax

l

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
j∈Nl

(iin)

[1 − kin
i kout

j
kik j

], for in-link neighbors

with label l

∑
j∈Nl

(iout )
[1 − kout

i kin
j

kik j
], for out-link neighbors

with label l

(9)

where kin
i and kout

i are in- and out-degree of node i, Nl
(iin)

and 
Nl

(iout )
are in- and out-link neighbors of node i with label l.

Then the contribution of E B A and E A′ B ′ to community forma-
tion can be represented as w B A and w A′ B ′ and computed as fol-
lows:

w B A = 1 − kout
B kin

A

kB ∗ kA
= 1 − 1 ∗ 1

4 ∗ 4
= 15

16
(10)

w A′ B ′ = 1 − kout
A′ kin

B ′ = 1 − 3 ∗ 3 = 7
(11)
kB ′ ∗ kA′ 4 ∗ 4 16
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Fig. 2. We extract this simple directed graph from paper [8] and the weights are 
ignored.

It is clear that E B A contributes more to identify local flow di-
rection than E A′ B ′ .

The process of DLPA is the same as LPA except for label choos-
ing rule. DLPA doesn’t make too many changes to LPA and keeps 
the same time complexity.

3.2. Constrained directed label propagation algorithm (CDLPA)

We previously mentioned that LPA and its extensions suffer 
from over propagation phenomenon. The imbalance growth of 
communities is the key problem. To ensure the weaker cores of 
communities have a chance to grow, we adopt a strategy in paper 
[7] that sets a growth capacity for all communities in each itera-
tion. The capacity function C(t) is defined as below:

C(t) = ([kt

T
] + 1) ∗ N

k
(12)

where N is the number of nodes, t represents the t-th iteration, 
T is the maximal number of iterations, and k is the number of 
times we change the capacity of communities.

As the Eq. (12) shows that we increase the community capac-
ity every T

k -th iteration by N
k . In each iteration, the algorithm will 

check whether any community reaches the current capacity limita-
tions or not. If the size of a community reaches the current capac-
ity, that community cannot attract new nodes until the capacity 
increases in the next iterations. This strategy tries to make a bal-
ance community growth. We set the community growth strategy 
for DLPA and propose an extension of DLPA, namely constrained 
directed LPA (CDLPA).

3.3. Case that makes a difference

To demonstrate the case that makes a difference, a simple di-
rected network composed of sixteen nodes is introduced. As shown 
in Fig. 2, the manifold of the network is pretty clear. We run DLPA, 
CDLPA, and LPA on this toy network for hundreds of times.

L Q min
DL P A = L Q max

DL P A = 0.4299 (13)

L Q min
C DL P A = L Q max

C DL P A = 0.4299 (14)

L Q min
L P A ≈ 0.1, L Q max

L P A ≈ 0.3756 ∼ 0.4299 (15)

DLPA and CDLPA succeed in retrieving the communities as the 
color denoted whereas LPA generates dozens of results and in most 
cases, it fails to recognize the expected communities.

3.4. Time complexity

The difference between LPA, DLPA, and CDLPA is the label 
choosing principle. The complexity of the directed extensions of 
LPA is unchanged. The label initialization requires O (n) time. 
Choosing a node randomly needs O (1) time. In each iteration, edge 
weight or node similarity calculating based on the label choosing 
principle takes O (m). Selecting a node label for a node requires 
O (d), where d is the degree of a node. The number of iterations 
needed for the algorithms is equal to the total number of effective 
updates k. For CDLPA, the community growth strategy sometimes 
may delay the converge and the number of iteration is slightly 
bigger. So, loosely calculating, the total running time of these algo-
rithms will be O (k ∗ max(n, m)).

4. Experimental results

To fully demonstrate the differences between DLPA, CDLPA, and 
LPA, we run them on both real and synthetic networks.

4.1. Measures

In this paper, two kinds of directed modularity are mentioned. 
Although Kim et al. observed the drawbacks of DQ and proposed 
LQ, the differences between DQ and LQ are not exactly tested on 
the actual data. So they are both used to evaluate the identified 
community structure.

For efficiency of calculating, DQ in a partitioning with C clusters 
can be written as below:

D Q =
∑
ci∈C

[ Ici

M
− cin

i cout
i

M2
] (16)

where Ici is number of links within partition ci , cin
i and cout

i are 
in-degree and out-degree of partition ci .

LQ is rewritten as below for the first time:

L Q =
C∑
t

[
∑
i∈t

(
απi Ei

iout
+ Ntπi

α(0iout
) + 1

N
) − (

∑
i∈t

πi)
2] (17)

where α is a damping factor and equals to 0.85, Ei is the number 
of out-links of node i within partition t , Nt is the number of nodes 
within partition t , πi is i-th element of PageRank vector of the 
network.

In the synthetic network test part, the normalized mutual infor-
mation (NMI) [9] is also used to evaluate the results of algorithms. 
Consider x and y as two partitions, then NMI can be defined as 
the fraction of the mutual information I and the conditional en-
tropy H :

NMI(x, y) = I(x, y)√
H(x)H(y)

(18)

4.2. Tests on real-world networks

We have tested directed extension algorithms against LPA on 
a wide variety of networks (networks are download from http://
konect .uni -koblenz .de) which are involved in different fields such 
as traffic, biology, paper citation, and social networks. Table 1 lists 
the details of these networks. Table 2 shows the evaluation for the 
identified community structures of these networks.

To have a better understanding of outputs from the algorithms, 
the maximum, average, and variance of modularity are computed 
for the ten datasets averaged on 100 or 50 realizations based on 
the size of networks.

In Table 2, the performances of DLPA and CDLPA are similar. 
For directed modularity (DQ), they outperform LPA in Max_DQ or 
Ave_DQ for about half of the networks. The directionality of the 
DLPA and CDLPA is not obvious. In Cora and Hepth networks, LPA 
performs better in both Max_DQ and Ave_DQ.

http://konect.uni-koblenz.de
http://konect.uni-koblenz.de
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Table 1
Overview of the networks used in the experiments.

Network Description Nodes Edges kin

Air Traffic USA air traffic control information 1225 2604 2
Bio-yeast Protein–protein interactions 1458 1948 2
Human-protein Protein interactions in Humans 2238 6425 3
Open Flights Flight records 2398 30499 10
Twitter lists Twitter user following information 22370 33101 2
Cora Cora citations 23166 91500 4
Google Google+ user–user links 23628 39242 2
Linux Network of Linux source code files 30837 213954 7
Hepth High Energy Physics Archive 34546 421578 12
Gnutella Network of Gnutella hosts 62586 147892 3

For LinkRank modularity (LQ), as stressed in the table, directed 
algorithms performs better than LPA in almost all the items. The 
average LQ of DLPA and CDLPA is greater than the largest LQ of 
LPA for all tests. The directionality of these directed algorithms can 
be observed.

There are some intuitive differences between DQ and LQ. The 
evaluation of DQ for DLPA and CDLPA is not very positive. Dur-
ing the computation, we find the best partitions recognized by DQ 
and LQ sometimes are different for the same network, which is 
consistent with the observation of Kim et al. [4], that DQ can-
not distinguish the direction of links. LQ can properly recognize 
the directionality of algorithms and the stability of LQ evalua-
tion is much better. However, on the numerical level of commu-
nity structural strength evaluation, DQ performs better. For the 
networks of Twitter and Human protein, the LQ is less than 0.1 
and even less than 0.01 for the Google network. These structures 
seem so weak that they are not worth exploring at all. So as 
the criteria of directed community structures, directionality, and 
numerical evaluation level should be better taken into considera-
tion.
4.3. Tests on synthetic networks

The synthetic networks employed in this part are generated by 
directed LFR benchmark [10]. The parameters of the LFR model 
including number of nodes (N), average in-degree (< kin >), max-
imum in-degree (kin

max), mixing factor (μ), exponent for the degree 
sequence (t1), exponent for the community size distribution (t2), 
and community sizes (cmin, cmax). We generate 6 directed networks 
with the following parameters:

N = 1000,< kin >= 5,kin
max = 10, t1 = 2, t2 = 1,

cmin = 10, cmax = 50, μ ∈ [0.1–0.5]
N = 1000,< kin >= 5,kin

max = 10, t1 = 2, t2 = 1,

cmin = 20, cmax = 100, μ ∈ [0.1–0.5]
N = 1000,< kin >= 5,kin

max = 50, t1 = 2, t2 = 1,

cmin = 10, cmax = 50, μ ∈ [0.1–0.5]
N = 1000,< kin >= 5,kin

max = 50, t1 = 2, t2 = 1,

cmin = 20, cmax = 100, μ ∈ [0.1–0.5]
N = 5000,< kin >= 5,kin

max = 50, t1 = 2, t2 = 1,

cmin = 10, cmax = 50, μ ∈ [0.1–0.5]
N = 5000,< kin >= 5,kin

max = 50, t1 = 2, t2 = 1,

cmin = 20, cmax = 100, μ ∈ [0.1–0.5]
The mixing factor μ can significantly affect the properties of 

the network and the larger it is, the less clear the community 
structure is.

As shown in Table 3, for the sake of completeness, we also 
compare with Louvain [11], Directed Louvain (D_Louvain) [12], 
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Table 2
Comparison between DLPA and LPA based on DQ and LQ.

Datasets Methods Max_DQ Ave_DQ Var_DQ Max_LQ Ave_LQ Var_LQ

Air Traffic LPA 0.4754 0.4383 0.0002 0.3578 0.3329 0
DLPA 0.5255 0.4860 0.0002 0.4261 0.4027 0
CDLPA 0.5303 0.4862 0.0002 0.4244 0.4021 0

Bio-yeast LPA 0.6638 0.6371 0 0.3464 0.3289 0
DLPA 0.7144 0.6987 0 0.4200 0.4129 0
CDLPA 0.7091 0.6977 0 0.4188 0.4131 0

Human-protein LPA 0.4189 0.1874 0.0068 0.0699 0.0417 0.0001
DLPA 0.3540 0.3391 0 0.0824 0.0800 0
CDLPA 0.3425 0.3331 0 0.0818 0.0800 0

Open Flights LPA 0.6099 0.5353 0.0054 0.5793 0.5346 0.0021
DLPA 0.5975 0.5571 0.0046 0.5770 0.5502 0.0021
CDLPA 0.6156 0.5259 0.0086 0.5868 0.5315 0.0035

Twitter lists LPA 0.7747 0.7567 0 0.0274 0.0268 0
DLPA 0.8351 0.8258 0 0.0296 0.0293 0
CDLPA 0.8356 0.8257 0 0.0296 0.0293 0

Cora LPA 0.6565 0.6433 0 0.4668 0.4466 0.0001
DLPA 0.6046 0.5878 0 0.5038 0.4959 0
CDLPA 0.6042 0.5913 0.0001 0.5025 0.4955 0

Google LPA 0.6435 0.6204 0.0003 0.0033 0.0032 0
DLPA 0.6748 0.5737 0.0122 0.0038 0.0034 0
CDLPA 0.667 0.5723 0.0084 0.0037 0.0034 0

Linux LPA 0.1462 0.1163 0.0003 0.0882 0.0750 0
DLPA 0.2698 0.2129 0.0015 0.3561 0.2066 0.0113
CDLPA 0.1897 0.1810 0 0.1275 0.122 0

Hepth LPA 0.6707 0.6551 0 0.4566 0.4474 0
DLPA 0.6667 0.6546 0 0.4651 0.4568 0
CDLPA 0.6629 0.6466 0.0001 0.4603 0.4556 0

Gnutella LPA 0.3529 0.3263 0.0055 0.0928 0.0856 0.0004
DLPA 0.3859 0.3850 0 0.1174 0.1172 0
CDLPA 0.3860 0.3855 0 0.1174 0.1173 0
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Table 3
Overview of the algorithms used in the experiments.

Algorithm Property Complexity

Infomap Directed edges: True; Weighted edges: True O(n*(n + m))
Louvain Directed edges: False; Weighted edges: True O(n*log n)
D_Louvain Directed edges: True; Weighted edges: True O(n*log n)
LPA Directed edges: False; Weighted edges: True O(max(n, m))
DLPA Directed edges: True; Weighted edges: True O(max(n, m))
CDLPA Directed edges: True; Weighted edges: True O(max(n, m))

and Infomap [8]. Louvain is an undirected modularity optimiza-
tion algorithm. Directed Louvain is a directed extension of Louvain, 
maximizing DQ. Infomap is a state-of-the-art algorithm in directed 
community detection. For LPA, Louvain, and Infomap, we use the 
packages in python-igraph. DLPA and CDLPA are programmed in 
python, and D_Louvain is coded in C. The NMI is computed for 
these algorithms averaged on 50 or 2 realizations based on the 
complexity of algorithms and the size of networks.

From the point of view of data fluctuation, the fluctuations of 
average NMI curves in the left column images are smoother. The 
performances of these algorithms in the right column images de-
crease at different degrees with the size of community increases. 
As shown in Fig. 3(a), (c), (e), with the increase of max in-degree 
or number of nodes, the performances of DLPA and CDLPA get 
better and better. They can outperform LPA, Louvain, D_Louvain, 
and Infomap. However, when increasing the number of communi-
ties, as shown in Fig. 3(b), (d), (f), the network structure becomes 
more complex and the performances of DLPA and CDLPA are on a 
decrease and make a difference. Among these algorithms, the orig-
inal LPA and its directed extensions show signs of failure at about 
μ = 0.5 obviously, meaning that the community structure is not so 
clear and some monster communities are formed. Compared with 
DLPA, CDLPA behaves better and the application of growth capacity 
improves the overall performance obviously.

In this paper, the proposed algorithms do not change the origi-
nal LPA too much to keep the low complexity. As the Fig. 3 shows, 
in most cases, DLPA outperforms LPA slightly. Interestingly, similar 
results can also be observed in D_Louvain and Louvain for the NMI 
test. However, it surely proves that the pure direction recognized 
strategy can have positive contributions to community detection. 
When we add other simple strategies to DLPA, the extension of 
DLPA (CDLPA) behaves a little better but takes more iterations. So, 
for better results, we can further integrate it with other knowl-
edge.

Amongst these algorithms, the performance of Infomap seems 
pretty satisfied, but its complexity is so high that it is not suit-
able for the large networks. As Fig. 3 shows, when the community 
structure is pretty clear, DLPA and CDLPA can be a substitute for 
Infomap. When the community structure is not so clear and the 
network is sparse, DLPA or D_Louvain is also a good choice.

5. Conclusion and future works

This paper explores the way for LPA to make good use of direc-
tionality in directed community detection. A heuristic algorithm 
called DLPA is proposed, which can recognize the local flow direc-
tion among the nodes. To demonstrate the extensibility of DLPA, 
we propose a constrained DLPA to overcome the problems existed 
in LPA and DLPA. In fact, besides the community growth strat-
egy, we can also integrate many other strategies into DLPA such as 
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Fig. 3. Average NMI comparison on synthetic networks.
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center nodes locating [13], a tunable weighting strategy [14], a po-
tential game-based weighted Modularity optimization [15], and so 
on. The experiments on real and synthetic networks show that the 
proposed algorithms have a better performance than some of the 
current representative algorithms.
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