
Physics Letters A 383 (2019) 2481–2487
Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Growth curve based label propagation algorithm for community 

detection

Xue Li

Computer Science, Northeast Forestry University, Harbin, 150040, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 January 2019
Received in revised form 27 April 2019
Accepted 2 May 2019
Available online 8 May 2019
Communicated by F. Porcelli

Keywords:
Complex network
Community detection
Label propagation
Growth curve

How to better and faster identify the community structure is a hot issue in complex networks. During the 
past decades, various attempts have been made to solve this issue. Amongst them, without doubt, label 
propagation algorithm (LPA) is one of the most satisfying answers, especially for large-scale networks. 
However, it has one major flaw that when the community structure is not clear enough, a monster 
community tends to form. To address this issue, we set a growth curve for communities, gradually 
increasing from a low capacity to a higher capacity over time. Further, we improve the mechanism of 
label choosing for small communities to escape from local maximum. The experimental results on both 
synthetic and real networks demonstrate that our algorithm not only enhances the detection ability of 
the traditional label propagation algorithm, but also improves the quality of the identified communities.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Any collection of entities and their reciprocal relationships in 
real life systems, such as medical systems [1] [2], traffic systems 
[3], and society [4], could be abstracted as a network of nodes and 
edges. One of the most important properties appeared in networks 
is community structures which are also called groups, clusters, co-
hesive subgroups or modules in different contexts. As a result, the 
exploration of the community structure in complex networks has 
aroused a great amount of attention throughout the recent years. 
However, the precise definition of the community still doesn’t
reach an agreement yet in the literature, but like many imper-
fect defined terms, it is suggestive rather than a settled notion [5]. 
Generally speaking, individuals in a network tend to form closely-
knit groups and interact more frequently with members within the 
group than those outside the group.

To measure the strength of a community partition, Newman 
et al. [6] put forward a useful method called modularity. It quan-
tifies the quality of a partition for a certain network by measuring 
how much denser the edges are within the groups compared to 
what they would be in a random graph with the same distri-
bution of degrees. With the emerge of modularity, many algo-
rithms for community detection set it as their objective function, 
which makes community detection become a modularity optimiza-
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tion problem. The definition of modularity can be written as be-
low:

Q =
Nc∑

t=1

(
It

2m
− (

Dt

2m
)2) (1)

where It is the number of edges inside partition t , Dt is the total 
degree of nodes inside t , 2m is the total number of edges, Nc is 
the set of all communities.

Over the past decades, various kinds of community detec-
tion algorithms have been proposed. Roughly speaking, these 
approaches can be separated into four categories: node-centric, 
group-centric, network-centric, and hierarchy-centric [7]. Node-
centric criteria, commonly used in traditional social network anal-
ysis, requires each node in a group to satisfy certain properties. For 
instance, considering the reachability, any node in a group should 
be reachable in k hops. A k-clique algorithm [4] tries to find a max-
imal subgraph in which the largest geodesic distance between any 
bodes ≤ k. It is still a challenge to generalize node-centric algo-
rithms to large-scale networks. A group-centric criterion requires 
the whole group to satisfy a certain condition. One such exam-
ple is density-based communities [8]. A subgraph can be seen as 
a cohesive subgroup when its density is greater than or equal to a 
given threshold. The network-centric community detection consid-
ers the global topology of a network and aims to partition nodes 
of a network into a number of disjoint sets. The approaches in-
clude clustering based on vertex similarity [9], latent space models 
[10], block model approximation [11], spectral clustering [12], and 
modularity maximization [13]. The algorithms presented above can 
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normally be applied to medium-size networks except the latent 
space model. The high computational complexity hinders its appli-
cation. Another line of community detection research is to build 
a hierarchical structure of communities based on network topol-
ogy. This facilitates the examination of communities at different 
granularity. There are mainly two types of hierarchical clustering: 
divisive [14], and agglomerative [15].

Among all the approaches and techniques described above, a 
network-centric based famous approach called label propagation 
algorithm (LPA) [16] is without doubt one of the most efficient de-
tection methods. However, the original LPA has some drawbacks, 
such as the occurrence of monster community, high randomness, 
and weak robustness. A standard approach for eliminating the 
monster community phenomenon is to add constraints to the ob-
jective function of the method. For example, Barber et al. [17] set a 
penalty term to Hamiltonian function and tried to get communities 
with the same total degree. Zhang et al. [18] integrated maximum 
belonging coefficient and edge probability into LPA. Chen et al. 
[19] introduced information entropy to describe the relation be-
tween direct and indirect neighbors. Another popular approach to 
attenuate the instability of LPA is to set an update order by calcu-
lating the node importance. Berti at el. [20] showed that ordering 
nodes according to centrality measures, such as betweenness cen-
trality, closeness centrality, and page rank centrality can improve 
the quality of groups detected. Moreover, some scholars think the 
reason for high randomness is that every node in the network is 
initialized with a unique label. Some of them combined the above 
approaches and proposed a core based label propagation, in which 
only core members have labels at the initial phase [21].

Different from the above approaches, we propose a new way to 
avoid the occurrence of monster community and increase the sta-
bility of the method. Without too many changes, we set a growth 
curve for LPA to balance the community growth rate in case that 
some small communities are too easy to be swallowed. Further, 
the mechanism of label choosing for propagation conflicts in the 
original LPA will produce fake groups, which are sparse and hard 
to grow up or to be swallowed. We slightly change the mech-
anism by keeping randomly choosing labels for small subgroups 
when propagation conflicts, until they are big enough. We validate 
the proposed method on both synthetic and real networks, which 
demonstrates that our algorithm not only improves the detection 
ability of the traditional label propagation algorithm but also im-
proves the quality of the identified communities.

The structure of the remainder of this paper is as follows. In 
Sec. 2, we briefly introduce the original LPA, growth curve, and 
the definition of the smallest group, which are the bases of next 
section. In Sec. 3, the proposed algorithm is presented and we val-
idate it in Sec. 4. Finally, we conclude with a summary in the last 
section.

2. Related work

In this section, we will introduce several relevant definitions 
that are used in this paper, mainly including: original label propa-
gation, growth curve, and definition of the smallest group.

2.1. The label propagation

Label propagation algorithm was proposed by Raghavan et al. 
[16], which only considers topology, requiring less extra informa-
tion. It is famous for its simplicity and time-efficiency. The main 
idea of LPA is simple; it works as follows:

Step 1: Each node is initialized with its node id (i.e. with a 
unique label).

Step 2: Each node updates its label to a new one which occurs 
with the highest frequency among the neighbors.
Fig. 1. The growth curve.

Step 3: If all the labels are no longer changed, then stop the al-
gorithm, or back to Step 2. Finally, each community is determined 
by the identical label.

The label updating principle is denoted as follows [22]:

lnew
v = argmax

l
|Nl(v)| (2)

where v is a node, l denotes the label of a node, Nv is the neigh-
bors of v .

2.2. The growth curve

Here, we borrow the term, growth curve, from statistics to de-
scribe the growth pattern of the communities in a network. Values 
for the community size can be plotted on a graph as an S-shaped 
curve function of time; see Fig. 1 for an example.

Generally speaking, things go through three stages of occur-
rence, development, and maturity, and the growth rate varies in 
different stages [23]. Usually, in the stage of occurrence, the speed 
of growth is relatively slow; in the development stage, the speed 
of change is accelerating; in the mature stage, the growth rate is 
slowing down. The level beyond which no major increase can oc-
cur is referred to as saturation level or carrying capacity.

2.3. The smallest group based on modularity resolution

Modularity is still one of the most widely used metrics to quan-
tify community structures, although it may fail to identify some 
smaller modules that contain fewer links than 

√
2m, which is 

known as resolution limit (RL) [24].
Here, we give the definition of the smallest group size based 

on the edge resolution limit. Let ns and m denote the size of the 
smallest group and the total edges of a network respectively. With 
the assumption that there is a connection between any two nodes, 
then the relation of ns and m can be defined as follows:

Cns
2 = ns × (ns − 1)

2
= √

2m (3)

Then the size of the smallest group in a certain network can be 
written as below:

ns ≈
√

2
√

2m (4)

The real-world networks are sparse and there is no clear rela-
tionship between the number of the nodes and the edges, so ns
is the lower limit of the size of groups containing 

√
2m links. We 

can define ns for any network. For example, the smallest group 
size for a network with 30000 edges is 16. If the size of a group 
is less than ns, it can be regarded as a small piece which hin-
ders the community detection. It is necessary to prevent unnec-
essarily large amounts of small pieces from hiding in the net-
works.
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Fig. 2. The growth capacity curve.

3. Proposed method

For original LPA, some scholars observed that roughly 70% of 
the nodes do not change their labels after the second iteration 
[25] and 95% of the nodes reach their final state in 5 iterations 
[16]. Thus the phenomenon that many potential small groups are 
swallowed already happened in the early stage. The growth rate, 
which varies significantly for different groups, is a noticeable fac-
tor for the monster community. Based on above considerations, to 
prevent over propagation, we integrate growth curve into LPA and 
present a growth-constrained LPA. The growth curve function is 
defined as follows:

growth(t) = N

1 + e−t+1+k
(5)

where N is the number of nodes in networks, t is the number of 
iterations, k is relative with the number of times we increase the 
size of communities. The relationship among N , t , and k can be 
observed in Fig. 2. When t is bigger enough, there is no constraint 
on the size of communities. Generally, in the first iteration, we 
require the group capacity is bigger than 1, which means that we 
need growth(t = 1) ≥ 1, so the maximum k for the network of ten 
thousand nodes in Fig. 2 is 9 (growth(t = 1) = 1.23).

Growth curve gives the weak cores a chance to grow up. How-
ever, not all of them can grow into a community. To recognize 
and release these invalid small pieces, we define the size of the 
smallest group and change the mechanism of label choosing. In 
our algorithm, after the second iteration, we will increase the in-
stability of these small pieces. If the size of the structure identified 
by the existing label is less than the size of the smallest group, the 
existing label will randomly change. All the steps in our algorithm 
are shown as follows: 

Algorithm 1 GCLPA.
1: for v ∈ V do
2: Lv ⇐ id(v)

3: end for
4: for t : 1 to T do
5: com_size(t) ⇐ growth(t)
6: for v ∈ V do
7: A ⇐ {L|S(L) < com_size(t), Neiv (L) > 0}
8: C ⇐ {L|L ∈ A, Neiv (L) = max(Neiv (L′|L′ ∈ A))}
9: candidate ⇐ random select from C

10: Lv ⇐ candidate
11: if S(Lv ) < ns and size of C > 1 then
12: Lv ⇐ random select from C
13: end if
14: end for
15: end for

There S(L) is the number of nodes with a label L, Neiv (L) denotes 
the number of nodes having a label L among the neighbors of v , 
and ns is the smallest group size for a network.
In the next section, we show the results of our tests on various 
datasets and examine the effectivity of our algorithm.

4. Experiments

In this section, we verify the performance of our algorithm in 
different ways. Firstly, we validate that the prevention of both over 
propagation and invalid small pieces will not reduce the quality 
of communities compared to traditional LPA. To validate that, we 
compare our algorithm’s performance with that of LPA on real net-
works. Then we compare the performance of LPA and GCLPA on 
synthetic networks with different group sizes. After that we apply 
powerful state-of-the-art algorithms and our algorithm to synthetic 
networks.

4.1. Measurements

We use Eq. (1) to calculate the modularity for tests of real-
world networks which are without the ground truth.

To evaluate the performance of community detection in syn-
thetic networks, we use another commonly adopted measure, nor-
malized mutual information (NMI), proposed by Danon [26]. The 
NMI compares the difference between real communities and the 
found communities by measuring the amount of their mutual in-
formation. It’s defined as:

N M I(X |Y ) = (−2 ×
|X |∑
i=1

|Y |∑
j=1

|Xi ∩ Yi | × log(
n × |Xi ∩ Yi |

|X | × |Y | ))

× (

|X |∑
i=1

|Xilog(
|Ci |
n

)|) +
|Y |∑
j=1

|Y j|log(
|Ci |
n

)|)−1 (6)

where n is the number of nodes in the network, X denotes a par-
tition generated by the algorithm, and Y is the corresponding real 
communities.

4.2. Tests on real-world networks

We have tested GCLPA against LPA on twelve well-known net-
works which are widely used in literature. Table 1 lists the details 
of these networks. They are involved in different fields such as 
biology, physics, politics and society. We ran our algorithm with 
different k (the number of times to increase the size of the group) 
such as 1, 3, 5 on all networks and select one of the best as the fi-
nal result. For the sake of simplicity, all the networks are treated 
as unweighted and undirected. Table 2 lists modularity scores for 
12 datasets averaged on 100 or 3 realizations based on the size of 
networks.

To have a better understanding of the output from the detec-
tion algorithms, we calculate minimal modularity, average modu-
larity and maximal modularity in Table 2. In almost all the test 
networks, GCLPA achieves a higher modularity, meaning that let 
the weak communities grow can improve the overall quality of 
detected communities. Moreover, the K-value choosing is not so 
difficult because of its upper limit for finding a positive initial ca-
pacity.

4.3. Tests on synthetic networks with different sizes

To explore the performance of LPA and GCLPA, we generate 6 
synthetic networks with different group sizes. The artificial net-
works employed in our experiment are generated by LFR bench-
mark. By construction, we can use LFR model to produce networks 
considered as realistic [27]. The LFR parameters are as below:
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Table 1
The real networks.

Network Description Nodes Edges

Karate Zachary’s karate club 34 78
Dolphins Lusseau’s bottlenose dolphins 62 159
Lesmis Characters in the novel Les Miserables 77 254
Polbooks Co-purchased political books 105 441
Football American football league 115 613
Jazz Jazz musicians network 198 5484
Netscience Scientists working on network theory 1461 2742
Polblogs U.S. political weblogs 1490 19090
Power Western U.S. power grid 4941 6594
Hep-th High Energy Physics Archive 7610 15751
CondMat Collaboration network of Arxiv Condensed Matter 23133 93497
DBLP DBLP collaboration network 317080 1049866

Table 2
The modularity comparison on real-world networks.

Datasets LPA GCLPA

Ave_Q Min_Q Max_Q Ave_Q Min_Q Max_Q K maxK

Karate 0.3426 0.0 0.4033 0.3907 0.3160 0.4156 3 4
Dolphins 0.4802 0.2209 0.5265 0.5077 0.4435 0.5285 3 5
Lesmis 0.4967 0.2089 0.5510 0.5368 0.5089 0.5532 3 5
Polbooks 0.4945 0.4509 0.5222 0.5135 0.4645 0.5262 3 5
Football 0.5920 0.5432 0.6052 0.5937 0.5448 0.6054 1 5
Jazz 0.3400 0.0 0.4426 0.4040 0.2787 0.4428 5 6
NetScience 0.9098 0.8950 0.9220 0.9062 0.8907 0.9160 3 8
Polblogs 0.3962 0.0005 0.4261 0.4228 0.0008 0.4316 1 8
Power 0.8036 0.7923 0.8151 0.8026 0.7924 0.8106 3 9
Hep-th 0.7696 0.7518 0.7778 0.7603 0.7453 0.7700 1 10
CondMat 0.6181 0.4286 0.6399 0.6261 0.6068 0.6359 1 12
Dblp 0.6887 0.6714 0.6975 0.6907 0.6871 0.6934 1 14
Net1: N = 1000, < k >= 20, kmax = 50, t1 = 2, t2 = 1, cmin =
5, cmax = 16, μ = 0.6

Net2: N = 1000, < k >= 20, kmax = 50, t1 = 2, t2 = 1, cmin =
25, cmax = 100, μ = 0.6

Net3: N = 1000, < k >= 20, kmax = 50, t1 = 2, t2 = 1, cmin =
10, cmax = 100, μ = 0.6

Net4: N = 1000, < k >= 50, kmax = 100, t1 = 2, t2 = 1, cmin =
5, cmax = 21, μ = 0.6

Net5: N = 1000, < k >= 50, kmax = 100, t1 = 2, t2 = 1, cmin =
25, cmax = 100, μ = 0.6

Net6: N = 1000, < k >= 50, kmax = 100, t1 = 2, t2 = 1, cmin =
10, cmax = 100, μ = 0.6

The scales of the size such as 5-16 and 5-21 are designed ac-
cording to the smallest group size definition to show the commu-
nity resolution of the algorithms.

Table 3 lists NMI and modularity scores for those synthetic 
datasets averaged on 20 realizations.

As the table shows that in both NMI and modularity, GCLPA is 
more stable and can get a better result. However, LPA easily fails 
to detect the communities. The extreme monster community phe-
nomenon of LPA can be observed in Net2 and Net3 and obviously, 
the whole graph is regarded as one community. We demonstrate 
the details of the optimal modularity outputs for Net4, Net5, Net6 
in Fig. 3.

The Max size and Min size in Fig. 3 are corresponding to the 
maximal and minimal group size of the true network partitions. It 
is obvious that GCLPA can prevent the over propagation and rec-
ognize the communities in proper size scales. The application of 
growth curve greatly improves the performance of GCLPA. By con-
trast, LPA can easily form some giant communities, which hinders 
the detection.
Table 3
The comparison between LPA and GCLPA.

Networks Algorithms NMI MaxQ MeanQ MinQ

Net1 LPA 0.7996 0.3775 0.3156 0
GCLPA 0.9994 0.3773 0.3767 0.3753

Net2 LPA 0 0 0 0
GCLPA 0.4577 0.3306 0.1611 0

Net3 LPA 0 0 0 0
GCLPA 0.8666 0.3456 0.3040 0

Net4 LPA 0.5008 0.3620 0.1907 0
GCLPA 1.0 0.3652 0.3652 0.3652

Net5 LPA 0.1786 0.3327 0.0639 0
GCLPA 0.9992 0.3462 0.3453 0.3377

Net6 LPA 0.1349 0.3290 0.0477 0
GCLPA 1.0 0.3408 0.3408 0.3408

As mentioned earlier, we set the smallest group size, ns, for ev-
ery network to decrease the smaller communities in each iteration. 
To show its importance, we define the algorithm without monitor-
ing ns as GCLPA* and compare it with GCLPA on Net1.

From Fig. 4, we can see that GCLPA detects smaller communities 
than GCLPA*, meaning that monitoring the smallest group size is 
helpful to filter the invalid small pieces.

4.4. Comparison with traditional algorithms

In this part, we compare GCLPA with original LPA, Louvain [15]
and CNM [28], which are the state-of-the-art algorithms. We gen-
erate 4 LFR benchmark networks with the following parameters:

N = 1000, < k >= 20, kmax = 50, t1 = 2, t2 = 1, cmin = 10, 
cmax = 50, μ ∈ [0.1 − 0.6]

N = 1000, < k >= 20, kmax = 50, t1 = 2, t2 = 1, cmin = 20, 
cmax = 100, μ ∈ [0.1 − 0.6]
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Fig. 3. The detected community sizes.
N = 5000, < k >= 20, kmax = 50, t1 = 2, t2 = 1, cmin = 10, 
cmax = 50, μ ∈ [0.1 − 0.6]

N = 5000, < k >= 20, kmax = 50, t1 = 2, t2 = 1, cmin = 20, 
cmax = 100, μ ∈ [0.1 − 0.6]

The properties of LFR networks, such as transitivity and degree 
correlation, are significantly affected by changes in μ. The larger it 
is, the less clear the community structure is.

The experiment results are displayed in Fig. 5, where each point 
in curves is obtained by running an algorithm 100 times for each 
value of the mixing coefficient.

As shown in Fig. 5(c), (d), both LPA and GCLPA achieve supe-
rior accuracy over CNM and Louvain even up to a mixing param-
eter of 0.6. Interestingly, the original LPA shows signs of failure 
at about μ = 0.5 in the N = 1000 benchmark networks, meaning 
that some monster communities are formed. Within the detectable 
range of the original LPA, GCLPA performs better. The applica-
tion of growth curve greatly improves the overall performance of 
LPA.

5. Conclusion

This paper presents a label propagation algorithm for commu-
nity detection based on the growth curve. To ensure the weak 
cores of communities have a chance to grow, we adopt a strategy 
that constrains the size of community in each iteration to balance 
the growth rate. We also define the size of the smallest commu-
nity based on the resolution of modularity and invalidate small 
pieces, of which the size is smaller than the smallest community 
size. By experiments on real and synthetic networks, we demon-
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Fig. 4. The comparison between GCLPA* and GCLPA.

Fig. 5. Average NMI comparison on synthetic networks.
strate that the proposed algorithm has a better performance than 
some of the current representative algorithms. In the future work, 
we will try to combine the techniques used in segmentation such 
as low-rank decomposition [29] and hierarchical local region [30]
with the label propagation algorithm.
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