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a b s t r a c t

The mechanism of message passing in graph neural networks (GNNs) is still mysterious. Apart from
convolutional neural networks, no theoretical origin for GNNs has been proposed. To our surprise,
message passing can be best understood in terms of power iteration. By fully or partly removing
activation functions and layer weights of GNNs, we propose subspace power iteration clustering (SPIC)
models that iteratively learn with only one aggregator. Experiments show that our models extend
GNNs and enhance their capability to process random featured networks. Moreover, we demonstrate
the redundancy of some state-of-the-art GNNs in design and define a lower limit for model evaluation
by a random aggregator of message passing. Our findings push the boundaries of the theoretical
understanding of neural networks.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The graph neural network (GNN) is one of the most widely
sed techniques for graph-structured data analysis, with applica-
ions in the social sciences, physics, applied chemistry, biology,
nd linguistics. In virtually every scientific field dealing with
raph data, the GNN is the first choice to obtain an impression
f one’s data. However, similar to the convolutional neural net-
ork (CNN), to explain the mechanism of the GNN is challenging
ue to its complex nonlinear iterations. It is worth noting that
e can understand the GNN better by removing the feature
ransformations from each layer. This idea can be expressed as

X ′

1 = ReLU[MXΩF1
]

X ′
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X ′
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kΩF )

, (1)

here M is the aggregator, X is the graph feature, and Ω is the
eature transformation matrix.

With the above model simplification, ReLU is invalid due to the
act that the aggregator M is nonnegative and the graph feature
an always be transformed to become nonnegative, and every
ode in a graph will always receive nonnegative information.
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Then the above k-layer GNN can be expressed as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X ′

1 = MX
X ′

2 = MX ′

1
...

X ′

k−1 = MX ′

k−2
X ′

k = MX ′

k−1
X ′

= Softmax(X ′

kΩF )

−−−−−→
yields

{
X ′

k = MkX
X ′

= Softmax(X ′

kΩF )
(2)

The expression X ′

k = MkX is known as the power itera-
tion (without normalization) (Golub & Van Loan, 2012). When
k is large enough, multiplying X repeatedly by the matrix M
moves every column vector of X to the dominant eigenvec-
tor (the eigenvector of the largest-in-magnitude eigenvalue) of
M . In practice, a GNN is a shallow iteration that calculates an
eigenvalue-weighted linear combination of all the eigenvectors
of the matrix M . For simplicity, we prove the above propositions
from a one-dimensional perspective. Assume that the matrix M
has n eigenvectors x1, x2, . . . , xn with corresponding eigenvalues
of λ1, λ2, . . . , λn, in descending order. The n linearly independent
eigenvectors form a basis for Rn. Then a nonzero random starting
vector v0 has

v0 = c1x1 + c2x2 + · · · + cnxn, ci ̸= 0. (3)

Multiplying both sides of this equation by M , we obtain

Mv0 = c1(Mx1) + c2(Mx2) + · · · + cn(Mxn)
= c1(λ1x1) + c2(λ2x2) + · · · + cn(λnxn)

(4)

Repeated multiplication of both sides of this equation by M gives

k k k k
M v0 = c1(λ1x1) + c2(λ2x2) + · · · + cn(λnxn) (5)
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The importance of each dimension (eigenvector) is down-
weighted by (a power of) its eigenvalue. In spectral clustering, the
top d eigenvectors generally define a subspace where the clusters
are well-separated. That subspace of Mkv0 is somewhat clearer, if
we scale the equation by the largest eigenvalue coefficient c1λk

1,

Mkv0

c1λk
1

= x1 +
c2
c1

(
λ2

λ1
)kx2 + · · · +

cn
c1

(
λn

λ1
)kxn (6)

With increasing k, some dimensions shrink quickly and even
collapse. Hence we can obtain some ‘‘good" dimensions and di-
minish the number of ‘‘bad" dimensions. In theory, we can ap-
proach the effective subspace by tuning k.

The above fact is not new. Lin and Cohen used it to detect
communities in an unsupervised way, and proposed power iter-
ation clustering(PIC) (Lin & Cohen, 2010), but constrained on one
dimension.

When running power iteration with a vector spaceMk
[v0|v1|...

vp], we can capture the true group structure from these varying-
convergence trajectories of different vector dimensions. We refer
to this as subspace power iteration clustering (SPIC).

Our work makes the following contributions:

1. We identify a possible theoretical origin for GNNs apart from
CNNs.

2. We extend GNNs and enhance their capability to process
random featured networks by our SPIC models.

3. We classify GNNs and demonstrate the redundancy of cur-
rent models.

4. We define a lower limit for GNN performance evaluation by
random aggregators.

The remainder of this paper is organized as follows. Section 2
introduces some related work. SPIC models are proposed in Sec-
tion 3, and are evaluated and compared in Section 4, where we
also discuss experiments to explore their properties. Section 5
provides conclusions and suggestions for future work.

2. Related work

Identifying the static or evolving community structure of net-
works is drawing increasing attention (Gao, Yu, & Zhang, 2020;
Liu, Wu, Xue, Zhou and et al., 2020; Liu, Wu, Zhou, & Yang, 2019).
State-of-the-art GNNs have been tested on the task of community
detection. Compared with conventional methods, GNNs show
their superior performance at producing nice graph embeddings
and capturing complex structures (Liu, Xue, Wu, Zhou and et al.,
2020). Classic spectral clustering methods such as the normalized
cut (Shi & Malik, 2000) use the exact eigenvectors to partition the
nodes into communities, and they suffer from high computational
complexity. GNNs have a similar mechanism with the spectral
clustering. The power iteration we explain in the introduction
actually performs the matrix decomposition.

When explaining the mechanism of GNNs, people seldom refer
to spectral clustering or power iteration clustering. The success of
GNNs has been attributed to Laplacian smoothing (Li, Han, & Wu,
2018), which makes the features of vertices in the same cluster
similar, and thus easy to cluster. This process can be further
understood through power iteration, and is best illustrated in the
context of spectral graph drawing.

Here, we take the GraphSAGE-mean model as an example and
plot a graph on one dimension, say the x−axis. Iteratively placing
each node at the average between its old place and the centroid
of its neighbors for k times can be expressed as

(I + D−1A)kx = x′, (7)

where D is the degree matrix and A is the adjacency matrix.
131
Combined with the concept of community, by which nodes
interact more frequently with members of the same group than
with those of other groups, all nodes are thus on the way to their
cluster centers. This explains geometrically why power iteration
works for community detection. Note that I + D−1A,D−1A, I −

−1A share the same eigenvectors. When k is sufficiently large,
converges to the dominant eigenvector 1n ≡ (1, 1, . . . , 1)T of

he degree normalized Laplacian D−1L, i.e., all the nodes are put
n the same location (Koren, 2005).

Some scholars extract a simple Laplacian power model from
NNs but interpret it differently. Wu et al. took the power iter-
tion, MkX , as a feature preprocessing step (Wu, Souza, Zhang,
ifty, et al., 2019). Dehmamy et al. regarded Mk as the graph
oment, which counts the number of paths from node i to j with

ength k (Dehmamy, Barabasi, & Yu, 2019).
Other interpretations (Huang, Yamada, Tian, Singh, et al., 2020;

i & Saude, 2020; Xie & Lu, 2019; Ying, Bourgeois, You, Zitnik, &
eskovec, 2019) focus on graph structures or features, and try to
dentify the informative components and important node features
ith a crucial role in a GNN’s prediction. However, when M or X

s random, if MkX still contributes to the community detection,
heir interpretations may need some adjustments.

. SPIC models

We reclassify the Laplacian aggregators, introduce a more
eneral concept, and propose our SPIC models, which are of
hree types depending on the application of message-Laplacian
igenvalues and eigenvectors. Inspired by the statistical charac-
erization of graph attention networks (GAT) on protein–protein
nteraction (PPI) data, we enrich these linear models with nonlin-
ar layers.

.1. Laplacian Matrix

Many Laplacians have been proposed, but there is no consen-
us in the literature as to which definition is most appropriate for
essage passing. We classify them according to the eigenvectors,
ince we know the mechanism of GNN:

aplacian Aggregator

⎧⎨⎩Lsm ≡ {I ± D−
1
2 AD−

1
2 ,D−

1
2 AD−

1
2 }

Lrw ≡ {I ± D−1A,D−1A}

Ldi ≡ (Γ + Γ T )/2
, (8)

where Lsm and Lrw are symmetric and random-walk Laplacians,
respectively. Lrw is similar to Lsm and Lrw = I −D−

1
2 (I − LsmD−

1
2 ).

Ldi is directed Laplacian (Chung, 2005) and Γ is an asymmetric
weight matrix.

Moreover, we denote LG as a generalized message Laplacian, by
hich passing messages contributes to the community detection.

.2. Static Laplacian SPIC

We propose SPIC models for some state-of-the-art GNNs to
how the idea of the static Laplacian. GNNs are listed in Table 1,
here Ã = A + I, D̃ii =

∑
j=0 Ãij, Ω ′ is the weight matrix

in each GNN layer and ΩF is the feature transformation in a
linear model. Interestingly, a basic GCN SPIC model, SGC, has been
proposed, but its theory is totally different from ours. It misses
the power iteration by taking (̃D−

1
2 ÃD̃−

1
2 )kX as a preprocessing

step and leaves many questions, which we will answer, such as:
why can we remove the activation functions from GNNs, does
this removal always work, how to determine k, and does only the
model redundancy exist? We write this model as

DAD(SGC) ≡ (βI + D̃−
1
2 ÃD̃−

1
2 )kXΩ β = 0, 1, 2... (9)
F
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GNNs Aggregator

GCN (Kipf & Welling, 2017) X ′
= D̃−

1
2 ÃD̃−

1
2 XΩ

′

GraphSAGE (Hamilton, Ying, & Leskovec, 2017) X ′
= D̃−1ÃXΩ

′

SGC(linear) (Wu et al., 2019) X ′
= (̃D−

1
2 ÃD̃−

1
2 )kXΩF

Table 2
Semistatic GNNs.
GNNs Aggregator

Spectral GCN
(Bruna, Zaremba, Szlam, & LeCun, 2014)

X ′
= Ug(Λ)UTXΩ

′

ChebNet (Defferrard, Bresson, &
Vandergheynst, 2016)

X ′
=

∑K−1
k=0 ΩkTk (̃L)X

TAG (Du, Zhang, Wu, Moura, & Kar, 2017) X ′
=

∑K
k=0 ΩkD̃−

1
2 ÃkD̃−

1
2 XΩF

APPNP(linear) (Klicpera, Bojchevski, &
Gunnemann, 2019)

X ′
= X (K )ΩF , X

k
=

[(1 − α)̃D−
1
2 ÃkD̃−

1
2 Xk−1

+ αX0]

GraphSAGE-mean was discussed in Section 2. We directly state
t as

A ≡ (βI + D̃−1̃A)kXΩF β = 0, 1, 2... (10)

Static Laplacian SPIC is close to the original power iteration
nd uses one Laplacian matrix as the aggregator.

.3. Semistatic Laplacian SPIC

The aggregators listed in Table 2 suffer from high compu-
ational costs and model redundancy. We provide some simple
omparisons from experiments, and focus on theoretical analysis.

The SPIC model of spectral GCN provides a new understand-
ng of its convolutional operations. Removing all the activation
unctions and the layer weights, we have
′
= Ug(Λ0)...g(Λk)UTXΩF ≈ Ug(Λ)kUTXΩF , (11)

here U is an eigenvector matrix and g(Λ) denotes a diagonal
igenvalue matrix.
The eigenvectors are invariant, and the eigenvalues are dy-

amic. In essence, it calculates a learned eigenvalue-weighted
inear combination of the eigenvectors at a high computational
xpense.
The SPIC model of ChebNet and TAG-like algorithms has been

roposed as APPNP. It is derived from PageRank, which is a kind
f power method. The creators of APPNP do realize this, but take
t as a tool, like SGC. Let us expand them with K = 3 and
∈ (0, 1):⎧⎨⎩X ′

Cheb = [Ω0I + Ω1Lsm + Ω2L2sm]X
X ′

TAG = [Ω0D−1
+ Ω1Lsm + Ω2L2sm + Ω3L3]X

X ′

APPNP = [α + α(1 − α)Lsm + α(1 − α)2L2sm + (1 − α)3L3sm]XΩF

(12)

They use a similar aggregator, which is a linear combination
of DAD(SGC) models. If they do not outperform corresponding
static models(GCN/DAD), then we may say the semistatic model
has redundancy.

One-dimension APPNP can clarify the definition of the
semistatic Laplacian. We denote the starting vector v0 in
eigenspace as v0 = c(0)1 x1 + c(0)2 x2 + · · · + c(0)n xn, ci ̸= 0, and write
an APPNP of three iterations as

X ′

APPNP =

K∑
i=0

(c(i)1 λi
1x1 + c(i)2 λi

2x2 + · · · + c(i)n λi
nxn)

= g(λ1)x1 + g(λ2)x2 + · · · + g(λn)xn

(13)
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Table 3
Dynamic GNNs.
GNNs Aggregator

AGNN (Thekumparampil, Oh, Wang, & Li, 2018) X ′
= P ′X

GAT (Velickovic, Cucurull, Casanova, Romero, et al., 2018) X ′
= Q ′X

The eigenvectors are invariant, and the scaling factor g(λ) is
a mixture of eigenvalues, which is similar to the SPIC model of
Spectral GCN. That is the key of the semistatic models.

3.4. Dynamic Laplacian SPIC

The above models are based on the traditional Laplacian, and
use no prior information. We present some prior Laplacian mod-
els in this section. The models in Table 3 use the attention
mechanism and integrate the learned feature similarity into their
edge weight. The aggregators are dynamic and graph-dependent.

AGNN defines its aggregator as P ′

ij =
exp(ε′

·cos(xi,xj))∑
t∈N(i)∪{i} exp(ε′·cos(xi,xt ))

. P ′

is symmetric, and there is only one parameter ε′ in each layer.
We design its SPIC model by removing all activation functions and
feature preprocessing operations to obtain

P_AGNN ≡ (βI + P)kXΩF , β = 0, 1, 2..., (14)

where Pij = softmax(ε · cos(xi, xj)), and ε is a hyperparameter set
to 1.0 in this paper.

GAT is an interesting method. Its attention mechanism causes
the relative importance of nodes to differ, which transforms the
undirected graph to a bidirectional network with asymmetric
edge weights. An asymmetric matrix may not satisfy the di-
agonalizable condition of the original power iteration. We can
symmetrize the attention weight by averaging the matrix and
its transpose. That is the idea of the directed Laplacian Ldi. We
create a SPIC model by removing all activations, layer weights,
and multi-heads, and iteratively learning with only one attention,

P_GAT ≡ (βI + Q )kXΩF , β = 0, 1, 2..., (15)

where Q =
Z+ZT

2 , Zij =
exp(LeakyReLU(aT [ΩF xi∥ΩF xj]))∑

t∈N(i)∪{i} exp(LeakyReLU(aT [ΩF xi∥ΩF xt ]))
, and a is

the attention vector. We design an asymmetric model by directly
using the attention weight,

P_GAT_am ≡ (βI + Z)kXΩF , β = 0, 1, 2... (16)

We will further discuss the symmetric or diagonalizable issue
below.

3.5. SPIC with nonlinear layers

We can use GAT to infer the graph types based on the atten-
tions learned. Li, Zhang, Shi, Wang, and Zheng (2019) observed
that the attention weights almost distribute uniformly on all the
benchmark citation networks, regardless of the heads and layers.
Significant differences are observed for the case of PPI. We classify
the above data as linear or nonlinear. For nonlinear data, we need
to add some nonlinear layers to our SPIC models. Three testing
models based on P_GAT are as follows,

P_GAT_Relu1 ≡

⎧⎨⎩X = XΩp
X = ReLU(QX) + βX
X ′

= (βI + Q )k−1XΩF

(17)

P_GAT_General ≡

⎧⎨⎩X0
= XΩp

Xk
= ReLU(QXk−1ΩR ) + βXk−1

′ k
(18)
X = X ΩF
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Fig. 1. Entropy histogram plots for attention weights of GAT on PPI. Each node entropy is calculated by H({wij∥j ∈ N(i)}) = −
∑

j∈N(i) wijlogwij .
Table 4
Dataset statistics of the citation networks and PPI.
Type Dataset #Nodes #Edges Train/Val/Test Connected

Linear Cora 2708 5429 140/500/1,000 No
Linear CiteSeer 3327 4732 120/500/1,000 No
Linear PubMed 19,717 44,338 60/500/1,000 Yes
Nonlinear PPI 2599 27,189 2,050/297/252 No

P_GAT_w ≡

{
X = XΩp

X ′
= (βI + Q )kXΩk

RΩF
(19)

ReLU is put on the first layer of P_GAT_Relu1 to keep the
eatures nonnegative. Q and X are all nonnegative. We put ReLU
nd another feature transformation ΩR in each layer of P_GAT_

General to strengthen its learning ability. P_GAT_w is designed
as the linear model of P_GAT_General.

By setting Q = D̃−
1
2 ÃD̃−

1
2 , we can propose DAD_Relu1,

AD_General and DAD_w. We next explore the nonlinear issue
y testing these models on PPI.

. Experiment and exploration

We compare SPIC models and GNNs on citation networks, con-
uct experiments to explore the properties of SPIC, and answer
he questions posed in Section 3.

.1. Datasets and codes

We focus on the task of node classification by using citation
etworks (Sen, Namata, Bilgic, Getoor, et al., 2008) and PPI (Zitnik
Leskovec, 2017) data. All the citation networks are PyTorch

uilt-in data, which are split well for training. For PPI, we choose
wo of its 24 networks and treat them as one big network. Dataset
tatistics are summarized in Table 4.
133
All experiments on GNNs are performed based on the codes
released by PyTorch. Our models and training settings may be
found at https://github.com/Eigenworld/SPIC. Results are aver-
aged over 10(for semistatic) or 20 runs, and 100 epochs per run.
For the single-label task (e.g., tests on citation networks), we
report the mean classification accuracy (with standard deviation),
and for the multi-label task (e.g., tests on PPI), we report the
micro-averaged F1 score.

4.2. Comparison of GNNs and SPIC models

Many structures of the existing GNNs such as activation func-
tions, layer weights, and multi-aggregators may not be the must-
have modules. For fairness, all GNNs compute 64 hidden features
and all linear models are iterated for two or three times. Table 5
shows that removing the activations and layer weights from
GNNs does not degrade the performance on citation networks. In
fact, linear models perform comparably (boldface) to state-of-the-
art GNNs. The results of two linear GAT show no big difference
between symmetric and asymmetric aggregators. In Section 4.4,
we will further test this issue. TAG and APPNP do not show
superior performance over GCN and DAD, respectively, which
verifies their model redundancy, as mentioned in Section 3.3.

Moreover, all GAT layers and heads learn similar aggregators
on citations networks (Li et al., 2019). These duplicated aggrega-
tors are simply shifted versions of each other, and they indicate
the linearity of model and data. This may explain why all the
activations and layer weights can be removed from GNNs on
citation networks.

Before diving into the tests on nonlinear data, let us observe
the attention weights of GAT in Fig. 1, where about eight different
attentions are learned. The first two layers capture the similar
attention pattern and four different attentions are learned. The
attentions captured by the final layer are obviously different from
those of previous layers. Pure linear models shown in Table 6
do not work this time. When adding ReLU to the first iteration,
DAD_Relu1 behaves closely to GAT. When adding the activation
Table 5
Test accuracy (%) on citation networks.
Model Cora CiteSeer PubMed

GCN DAD(SGC) 82.2 ± 0.6% 82.3 ± 0.5% 72.0 ± 1.1% 72.0 ± 0.4% 78.8 ± 0.5% 79.2 ± 0.4%
SAGE DA 82.3 ± 0.9% 82.3 ± 0.5% 71.4 ± 1.0% 72.3 ± 0.2% 78.5 ± 0.5% 79.3 ± 0.7%
AGNN P_AGNN 81.5 ± 0.7% 82.5 ± 0.6% 71.5 ± 0.7% 72.5 ± 0.5% 78.9 ± 0.7% 79.0 ± 0.6%
GAT P_GAT 82.4 ± 0.8% 81.7 ± 0.5% 71.7 ± 0.8% 71.2 ± 1.2% 78.1 ± 0.6% 77.3 ± 1.1%
− P_GAT_am − 81.0 ± 0.7% − 71.0 ± 0.8% − 77.3 ± 1.0%
TAG APPNP 82.4 ± 0.9% 82.4 ± 0.7% 71.2 ± 0.9% 72.0 ± 0.3% 78.7 ± 0.4% 78.8 ± 0.7%
Table 6
Test Micro F1 Score (%) on PPI.
Model GAT P_GAT P_GAT_Relu1 P_GAT_General P_GAT_w
PPI 65.5 ± 0.5% 51.0 ± 1.0% ↓ 54.8 ± 1.8% 63.6 ± 0.5% 53.2 ± 0.8%

Model GCN DAD(SGC) DAD_Relu1 DAD_General DAD_w
PPI 62.1 ± 0.6% 46.1 ± 1.0% ↓ 64.4 ± 0.5% 64.1 ± 0.7% 54.1 ± 1.0%

https://github.com/Eigenworld/SPIC
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able 7
est accuracy (%) on reduced Cora.
Model Cora_800 Cora_193

GCN DAD(SGC) 80.6 ± 0.5% 82.0 ± 0.4% 75.5 ± 1.2% 79.0 ± 0.6%
SAGE DA 80.9 ± 0.5% 81.6 ± 0.7% 76.2 ± 0.9% 79.2 ± 0.4%
AGNN P_AGNN 80.7 ± 0.7% 81.5 ± 0.3% 78.5 ± 0.8% 79.1 ± 0.5%
GAT P_GAT 80.6 ± 0.5% 80.4 ± 0.4% 77.4 ± 0.6% 78.6 ± 0.8%

Table 8
Test accuracy (%) of DAD on random citation networks.
Cora_100 Cora_300 Cora_500 Cora_1000 Cora_2000
68.5 ± 0.6% ↑ 74.5 ± 0.7% ↑ 73.6 ± 0.3% 72.8 ± 0.5% 72.4 ± 0.5%

Cite_100 Cite_300 Cite_500 Cite_1000 Cite_2000
42.4 ± 1.0% ↑ 47.0 ± 0.7% ↑ 48.8 ± 0.9% ↑ 50.9 ± 0.6% ↑ 49.6 ± 0.9%

Pub_100 Cite_300 Pub_500 Pub_1000 Pub_2000
65.7 ± 0.6% ↑ 67.0 ± 0.4% ↑ 69.0 ± 0.8% ↑ 72.0 ± 0.6% ↑ 68.8 ± 0.9%

and layer weight to each iteration, P_GAT_General almost reverts
to the performance of GAT. The final contrast model shows that
the nonlinear layers work, and layer weights contribute slightly.

4.3. Graph feature space exploration

How seriously does our project suffer from feature redun-
ancy? We show feature redundancy using Cora’s first 800 di-
ensional features and 193 compressed dimensional features.
he original feature size is 1433.
Table 7 shows that we loss little by reducing feature dimen-

ions, especially for SPIC models, which means we can further
ptimize the graph features. A follow-up question is how can
e design the feature width. We explore this issue by running
AD on random-feature graphs. Table 8 reveals that wider is not
lways better and it depends on the data. We further compare
PIC and state-of-the-art GNN models on well-designed random
itation networks in the following.
Considering Tables 5 and 9, GNNs only well serve the networks

ith real-world features, whereas SPIC models can still capture
ommunities in these random featured networks. The noteworthy
hange here is that random features require more iterations (k =

0).

.4. Random Laplacian

Previous studies focused on the aggregator design and never
ested random aggregators. We design symmetric and asymmet-
ic random aggregator tests on citation networks. In Section 3.1,
e define the generalized Laplacian LG in the manner of message
assing. Here, we instantiate it with random symmetric and
symmetric models,

RL_sm ≡ [(H + HT )/2 + I]kX, H = A ∗ W
RL_am = (A ∗ W + I)kX , (20)

here W is a matrix filled with random numbers from a uniform
istribution over [0,1).
Another instantiation is to randomly initialize the attention

ector of P_GAT and we propose RGAT_sm and RGAT_am.
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The results in Table 10 are noteworthy, random Laplacian
works, which indicates that the topology itself contributes no-
tably to community detection. In this sense, if a method does
not outperform the random Laplacian, we may conclude it is not
effective enough. The symmetry test on P_GAT is consistent with
the results in Section 4.2, and RL_am is slightly better than RL_sm.
So, they both work and we need not be concerned about the
symmetric or diagonalizable issue of the aggregator.

5. Conclusion

By fully or partly removing activation functions and layer
weights of GNNs, we propose subspace power iteration clustering
(SPIC) models to explore the mechanism of GNNs. Five cases were
discussed:

A⃝ All activation functions and layer weights are removed.
B⃝ All layer weights are removed and ReLU is put on the first

ayer.
C⃝ All layers have activation functions and share the same

eight.
D⃝ All layers share the same weight and all activations are

emoved.
E⃝ Random aggregators are used.
We can extract the power iteration model MkX in all these

cases. Model A⃝ shows a failure of activations and weights in the
case of linear data and random featured graphs. B⃝, C⃝ and D⃝
suggest that GNNs depend much on activations and layer weights
for nonlinear data, but we can follow a power iteration style to
remove unnecessary parameters and greatly simplify GNNs.

The type of data is defined by GAT:

• Linear: When running GAT, attention weights almost dis-
tribute uniformly regardless of the heads and layers. Activa-
tions and layer weights are invalid to some extent on these
data.

• Nonlinear: Significant differences of attention can be ob-
served.

It is interesting that random aggregators also work. The topol-
ogy itself means much to the community detection; perhaps we
should not put much focus on the design of GNN aggregators.

Experiments with the above methods verify that GNNs can
be simplified to a power iteration style with fewer parameters.
The noteworthy improvement is that SPIC models can deal with
the random featured networks. Also, the network features can be
optimized to speed up GNNs. It is obvious that there is a lot of
leeway and creativity in explaining the mechanism of GNN. An
interesting direction for future work is to explore the relation
between CNN and power iteration.
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Table 9
Test accuracy (%) on random citation networks.
Model Cora_300 CiteSeer_500 PubMed_1000

GCN DAD(SGC) 43.9 ± 0.9% 74.3 ± 0.2% 28.7 ± 0.6% 49.8 ± 1.0% 42.5 ± 1.1% 72.0 ± 0.6%
SAGE DA 50.1 ± 0.8% 75.3 ± 0.6% 32.2 ± 0.9% 50.4 ± 1.3% 44.2 ± 1.5% 72.4 ± 0.7%
AGNN P_AGNN 42.9 ± 0.7% 75.0 ± 0.5% 28.4 ± 0.4% 49.5 ± 0.8% 43.5 ± 2.4% 71.8 ± 0.6%
GAT P_GAT 51.9 ± 1.6% 61.6 ± 2.6% 33.2 ± 0.9% 44.2 ± 1.3% 44.9 ± 1.9% 70.0 ± 2.8%
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Table 10
Test accuracy (%) of random Laplacian models.
Model Cora CiteSeer PubMed

RL_sm RL_am 73.7 ± 1.3% 75.7 ± 1.7% 62.7 ± 0.9% 64.5 ± 1.4% 75.9 ± 0.6% 76.9 ± 0.3%
RGAT_sm RGAT_am 80.4 ± 0.5% 80.2 ± 0.7% 65.5 ± 1.8% 65.3 ± 2.0% 77.2 ± 0.7% 77.5 ± 0.7%
L

L

L
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