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a b s t r a c t

The graph neural network (GNN) is a widely adopted technique to process graph-structured data.
Despite its pervasiveness, the exact reasons for the message aggregator’s effectiveness are still poorly
understood. The popular belief is that this effectiveness stems from optimizing edge weights to
improve the local fusion of node information. In this study, we demonstrate that such propagation
weight optimization has a limited contribution to the success of message passing. Instead, we find that
any normalized random attention (or edge weights) can have a similar and, sometime, even stronger
effect. We refer to these randomly initialized propagations as irregular message passing. Experiments
conducted on our random edge weight and random attention models verified the positive impact of
weight randomness, uncovering the importance of the topology itself in achieving superior results for
message iterations. Our code is available at https://github.com/Eigenworld/RAN.

© 2022 Published by Elsevier B.V.
1. Introduction

Graph neural networks (GNNs) are becoming increasingly
opular due to their revolutionary performance in representation
earning of graph-structured data, with applications in the social
ciences, physics, applied chemistry, biology, and linguistics. They
re the first choice to obtain an impression of one’s data in most
esearch areas focusing on graph data. The inspiration of GNNs
s primarily derived from convolutional neural networks (CNNs).
he resulting migration models naturally inherit their deep learn-
ng lineage — coupled activation functions and layer weights.
NNs broadly follow a recursive message passing scheme, where
ll the nodes iteratively follow some well-designed rules (or
dge weights) to produce their new representations. Many vari-
nts of GNNs, such as graph convolutional networks (GCNs) [1]
nd graph attention networks (GATs) [2], have demonstrated
round-breaking performance in many tasks, such as node clas-
ification, link prediction, and graph classification. However, the
esign of these GNNs is based on empirical intuition, heuristics,
nd experimental trial-and-error. The theoretical explanation and
odel evaluation of state-of-the-art GNNs are thus important for
nderstanding their representational properties and limitations.
The common thread in the literature is that the effectiveness

f message iterations originates from the well-designed edge
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weight. One of the most widely used kernels is the diagonalizable
propagation matrix, including all symmetric matrices (e.g., sym-
metric Laplacian matrix and cosine similarity matrix) and some
asymmetric matrices (e.g., random walk Laplacian matrix). In [3],
we demonstrate that these diagonalizable kernel-based GNNs can
be best understood by removing layer weights and activation
functions as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

X ′1 = ReLU [MXΩ1]
X ′2 = ReLU

[
MX ′1Ω2

]
. . .

X ′k−1 = ReLU
[
MX ′k−2Ωk−1

]
X ′k = MX ′k−1
X ′ = Softmax

(
X ′kΩ

)
→

{
X ′k = MkX
X ′ = Softmax

(
X ′kΩ

)

(1)

where M is the aggregator, X is the graph feature, and Ω is the
layer weight.

The expression X ′k = MkX is known as power iteration [4],
which is used to calculate eigenvectors. When k is large enough,
the constant multiplication sends the feature vectors X to the
eigen-subspace, where the clusters are well-separated:

MkX = c1(λk
1v1)+ c2(λk

2v2)+ · · · + cn(λk
nvn) (2)

where v and λ are eigenvectors and eigenvalues of M , respec-
tively. c is the coefficient (ci ̸= 0).

With increasing k, the noisy eigenvectors shrink quickly, and
the eigenvectors with large eigenvalues are preserved to form an
informative subspace.

https://doi.org/10.1016/j.knosys.2022.109919
http://www.elsevier.com/locate/knosys
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Fig. 1. Illustration of the eigen-subspace of Laplacian aggregator-based models
n the Cora_300 dataset. The results are averaged over 5 runs and 100 epochs
er run.

To obtain some understanding of the above eigen-subspace,
e set M = D−1/2AD−1/2, and run Linear GCN [3,5] and GCN
n Cora_300 (Cora with 300-dimensional random number fea-
ures). As shown in Fig. 1, the accuracy of Linear GCN gradually
ncreases with iterations and finally stabilizes at approximately
2%, forming an effective cluster subspace. Because there is no
seful information in random features, the GCN learns nothing.
he resulting noisy layer weights hinder the formation of an
nformative space.

It is more common to train shallow GNNs with meaningful
raph features. When k is small, MkX is the feature-dominated
nformation fusion. When increasing k constantly, the feature
nformation diminishes rapidly, and the structural representation
or eigen-subspace) gradually dominates the iteration. These are
he two phases of power iteration. Section 4.4 provides a deeper
nalysis of the second phase.
One question that is easy to neglect but deserves exploration

s: Is the effectiveness of message passing uniquely tied to the
ell-designed propagation weight? Or could a similar effect be
chieved using some ‘‘bad’’ edge weights? Equipped with the
bove understanding of message passing, we propose irregu-
ar message passing to enrich the design of current GNNs. By
onducting extensive experiments on our random edge weight
etworks and random attention networks, the new findings are
s follows.

1. Message passing is not very sensitive to the edge weights.
The graph topology itself is the key point for message
aggregation.

2. We may not need a learnable attention mechanism. Any
normalized random attention can achieve a satisfying per-
formance.

Additionally, we also design generalized models of random
ttention by simply modifying the most popular algorithms on
he OGB leaderboard. All experimental results confirmed the re-
iability and effectiveness of irregular message passing.

Our work makes the following contributions:

1. Irregular message passing is systematically presented for
the first time.

2. Eigen-subspace analysis of GNNs is first given.
3. The structural defect of the graph attention mechanism is

systematically presented.
4. The positive impact of randomness on neural learning sys-

tems is fully explored.
5. A unified geometric view of message propagation is pro-

posed.
2

Table 1
Negative impact factors of attentions.
Data Partial-

neg
Full-
neg

GAT
result

One
degree

Cora 29.4% 58.3% 82.9% 18%
CiteSeer 27.5% 46.2% 72.3% 40%
PubMed 43.6% 36.9% 79.7% 46%

The remainder of this paper is organized as follows. Section 2
analyzes the architecture development of graph neural networks
and places much focus on the structural defects of the graph
attention mechanism. Section 3 first presents a unified geometric
view of message passing and then defines random weight net-
works, random attention networks, and random multi-attention
networks. In Section 4, we conduct extensive experiments to
verify the effectiveness of irregular message passing and explain
why this is the case. Finally, Section 5 ends with a discussion and
ideas for future research.

2. Related work

The earliest attempt at using neural networks for graphs
can be traced back to the early 1990s, often referring to using
recurrent neural networks to represent directed acyclic graphs
[6,7]. The first proper construction of graph neural networks
was proposed in the 2000s, and the well-designed propagation
basically uses recursive aggregation until convergence [8,9]. What
is generally known as graph neural networks starts by transfer-
ring convolutions from Euclidean to non-Euclidean space. Bruna
et al. [10] and Defferrard et al. [11] used a Laplacian eigen-system
to perform convolutions on the Fourier domain of graphs, which
is known as spectral graph convolutional neural networks. Kipf
and Welling [1] used a linear filter to approximate the above
spectral method and reduced it to an efficient spatial architecture
(GCN). After that, aggregating messages along the graph topology
becomes the mainstream of the GNN design. Gilmer et al. [12]
defined this iterative process as message passing, providing a
unified view of GNNs.

The propagation matrix with excellent properties played an
important role in the early development of GNNs. Similar to the
kernel of GCN, the symmetric Laplacian matrix, its orthogonal
eigenvectors can still well reflect the ideas of Fourier transform
and convolution. To date, the consensus in the literature about
the mechanism of message passing is still Laplacian smoothing.
In the later spatial model design, however, spectral graph theory
is almost absent in designing and explaining GNNs.

The new trend for designing spatial models is to incorporate
the graph feature information into edge weights. The most well-
known method is graph attention neural networks (GATs) [2],
which has more than 4,000 citations from 2018 to 2022. The
success of the attention mechanism has long been attributed to
its adaptive information selection. Based on this common belief,
many variants of attention models [13–15] have been devel-
oped to improve the local fusion of node information. Somewhat
shockingly, however, this is not the case for graph attention.

Table 1 lists the distribution of nodes with partial or full neg-
ative attention scores. These scores are produced by one of GAT
layer attentions. Li et al. [16] observed that the attention weights
are distributed similarly on all citation networks, regardless of
the heads and layers. Full negative attentions have little to do
with the notion of focusing on informative neighbors, but GAT
still achieves a good result using these degenerate attentions. The
reason, as shown in Fig. 2, is that the softmax structure of the at-
tention mechanism does not consider neighbor similarities. When
all attention scores are negative, the softmax exponential function
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Fig. 2. The attention is dot-producted with each concatenated feature in the
neighbor list to compute a score. This is done in parallel for all source nodes.
Negative scores indicate the dissimilarity between the source node and its
neighbors. The softmax structure transforms these scores into a list that sums
to 1.0, even if they are all negative.

suppresses these negative inputs, resulting in local weights close
to a uniform distribution D−1A.

From the topology perspective, we do not need to control
graph attention. Attentions are, in fact, constrained by the graph-
affiliated structure. Affiliated nodes (e.g., one-degree nodes
shown in Table 1 or nodes with many common neighbors) are
forced to follow the label of their neighbors. These findings chal-
lenge the conventional wisdom about graph attention models.

Therefore, although knowledge from convolutional neural net-
works has enabled the graph learning community to make sub-
stantial gains in recent years, we anticipate that in the long term
it is likely to impede progress. Our following explorations also
confirm this claim.

3. Irregular message passing networks

In this section, we begin by explaining the mechanism of
message passing in the context of spectral graph drawing [17]
and present a unified geometric view of GNNs. Then, three ir-
regular message passing networks are proposed. This is the first
systematic study of the randomness in message propagation in
the literature.

3.1. Geometric view of message passing

An attractive feature of power iteration is that it can be related
to an intuitive geometric process. This study starts by exploring
the optimization problem associated with Laplacian and defines
the quadratic form of Laplacian as

xT Lx =
∑
(i,j)∈E

wij
(
xi − xj

)2
, x ∈ R1×n (3)

For each node i, the partial derivative of xT Lx with respect to
xi is

∂xT Lx
∂xi
= 2

∑
j∈Ni

wij
(
xi − xj

)
(4)

Equating the Eq. (4) to zero and isolating the location of node
i gives

xi =

∑
j∈Ni

wijxj
(5)
deg(i)
3

This new derivation suggests that placing each node at the
weighted centroid of its neighbors could minimize xT Lx. However,
this solution is unwanted in that all the nodes will always be put
at the same location. To prevent this collapse at the center of the
drawing, we shift the neighbor centroid of node i outwards by the
amount of µ|xi|, and µ > 0. Then, we obtain

xi −

∑
j∈Ni

wijxj
deg (i)

= µxi (6)

Stacking all the node vectors in the matrix yields

D−1Lx = µx (7)

We can rewrite it to obtain a more familiar eigen-equation,(
I + D−1A

)
x = λx, λ = 2− µ (8)

According to power iteration, for any non-constant starting
vector x0,

(
I + D−1A

)k x0 will ultimately converge to the dominant
eigenvector of I + D−1A. By orthogonalizing against previously
calculated eigenvectors at each iteration, we can calculate any
desired eigenvector.

Fortunately, we do not need to calculate the exact eigen-
basis, and a small number of matrix–vector(s) multiplications is
enough to differentiate dissimilar nodes. Finally, we derive a lin-
ear GraphSAGE model [18] from the quadratic form of Laplacian.(
I + D−1A

)k
X (9)

For each column of X , every node is iteratively put at the
average between its previous location and the neighbor centroid.

By tuning the centroid and the deviation term in Eq. (6), we
can construct any diagonalizable filters. However, for irregular
filters, it is impossible to define such a perfect eigen-equation.
Therefore, a more universal expression is

xi ±
∑
j∈Ni

mijxj (10)

where m is the weight of the diffusion matrix and generally, it
requires 0 < mij < 1.

In light of graph drawing, we attribute the success of message
passing to the local inward movements of nodes at each iteration.
In the experiment, we will show that any irregular local inward
movements could produce communities. Linear and nonlinear
movements are both allowed.

3.2. Random weight networks

An interesting way of passing messages is random diffusion.
The above geometric framework can be expressed as

xi ±
∑
j∈Ni

mrijxj (11)

where mr is randomly generated in certain ways.
One natural construction of mr is generating random neighbor

weights directly. This model is referred to as a random weight
network (RWN), and we define it in a power iteration style as
follows, i.e., all the layers share the same diffusion matrix M .

Preprocessing :

⎧⎨⎩
Adjacency A, Random matrix W
M = A ∗W + I
M = Normalize (M)

Model :
{
X ′ = MkX
Xp = MLP

(
X ′

) (12)

where W obeys the uniform or normal distribution (in absolute
value), Normalize is lp − row− normalization, for p = 1, 2, or∞,
and MLP is a linear classifier.
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RWN, in fact, can be seen as a perturbation matrix of I+D−1A,
nd the perturbations are the noisy matrix W and the methods
f weight normalization. According to the random matrix the-
ry [19], small perturbations do not change the eigen-system too
uch, but the high level of constrained perturbations (normalized

andom weights, in our case) are poorly studied. In Section 4, we
xplore the properties of the above irregular matrix in the graph
ode classification task.

.3. Random attention networks

Another random weight is based on the attention mechanism.
xisting attention-based models attach much importance to their
earnable parameters. Similar to the expression below, Eq. (13),
he kernel of GAT, is used at each GAT layer. The learnable pa-
ameters are the attention vector α⃗ and the layer weight w. These
arameters and the nonlinear activation LeakyReLU are thought of
s the key factors of attention models. GAT also uses the multi-
ead mechanism to stabilize the performance, i.e., many attention
omponents are trained in parallel at each layer.

ij = Softmax(LeakyReLU
(

α⃗
[
hiw ∥ hjw

])
) (13)

Different from the above ideas, we believe we do not need
o control graph attention. As discussed in Section 2, attention
s constrained by the graph topology. Therefore, we could incor-
orate the feature information into the edge weights in a random
ay. We drop all learnable parameters, activation functions, and
he multi-head mechanism and randomly generate the attention
ector α⃗ obeying a uniform or normal distribution. The proposed
andom attention network (RAN) is defined as the following
yTorch pseudocode.

reprocessing :

⎧⎨⎩
Random attention vector α⃗

α⃗ = Normalize (α⃗)

Mij = Softmax(α⃗ · [X[i, : ] ∥ X[j, : ]])

Model :
{
X ′ = MkX
Xp = MLP

(
X ′

) (14)

here ∥ is the concatenation operation to concatenate two node
epresentations, X[i, : ] and X[j, : ].

As shown in Eq. (14), there is only one attention vector,
nd the propagation weight M is calculated based on attention-
eature cosine similarities. This random attention structure is
ard to reconcile with the claim that the performance gain of
ttention-based models stems from their adaptive information
election.

.4. Random multi-attention networks

We also construct a random multi-head attention network
RMN) that is very similar to GAT. The random weight for each
ead attention is calculated using Eq. (15). The resulting propaga-
ion matrices are then, as shown in Eq. (16), used to finish 1-order
essage passing, which is run in parallel per layer. The final step

s concatenating or averaging the outputs of different heads to
tabilize the node representation. By repeating the above random
ulti-head attention layer, we can build a linear, nonparametric,
nd random graph attention neural network.

Head (X) =

⎧⎨⎩Predefine :
{
α⃗← Random Initialization
α⃗ = Normalize (α⃗)

Mij = Softmax(α⃗ · [X[i, : ] ∥ X[j, : ]])
(15)
4

Repeat k Times

⎧⎪⎪⎨⎪⎪⎩
Mith = Head (Xin)

Xouts = [M0,M1, . . . ,M#] · Xin

Xlayer = Concat or Mean (Xouts)

Xin = Xlayer

(16)

In the geometric view, all the nodes follow the same random
rule to move to the centroid of their neighbors at each iteration.

3.5. Nonlinear architecture

The current popular GNNs prefer to insert the feature transfor-
mation and the activation function into their aggregation process.
During the training, the weight update is coupled with message
propagation, which increases the training complexity. We now
seek to design nonlinear random models with Parameter-Free
message passing. Here, we take RWN as an example and propose
RWN+ as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Random aggregator M
X1 = MX
X2 = MX1

. . .

Xk = MXk−1

X ′ = 1
k

∑k
i ReLU (WiXi)

Xp = MLP
(
X ′

)
(17)

To keep passing messages only once, we use the nonlinear skip
connection to feed all previous outputs to the MLP classifier. The
aggregation process still discards activation functions and layer
weights. We further propose RAN+ and RMN+ in the same way.

3.6. Randomness analysis

The randomness in our models refers to the edge weight
initialization, and it is just an unparameterized way to define
aggregators. Random attention (or edge weights) is produced be-
fore the training and kept constant all the time. Previous studies
using random processes are different from ours. Of particular in-
terest are Dropout [20], DropEdge [21], FastGCN [22], and Graph-
SAGE [18]. They randomly remove some of the elements of graph
attributes to boost the performance or save memory. Randomness
is very important for them. If the binary operation (keep or
remove) constantly removes very important input features, edges,
or nodes, the model performance will drop drastically. However,
for irregular message passing, randomness is not as important.
Experiments in Sections 4.3 and 4.5 show that RAN is not sensi-
tive to its attention values. The learnable attention vector can be
replaced with a random vector to reduce unnecessary parameter
learning.

4. Experiments

How much improvement is provided by optimizing the prop-
agation weight, compared to just using random aggregators?
To address this issue, we performed a comparative evaluation
of irregular message passing networks against traditional repre-
sentation learning methods and various GNN variants in node
classification tasks.

4.1. Experimental setup

Dataset. We conduct exploratory experiments using six node
classification benchmark datasets across domains: citation net-
works (Cora, CiteSeer, PubMed [23], DBLP [24]), air traffic (Air-
USA [25]), and protein–protein interactions (PPI [26]). All the
citation networks are PyTorch built-in data, which are split well
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Table 2
Dataset statistics of benchmark networks.
Dataset #Nodes #Edges #Features Train/val/test

Cora 2,708 5,429 1,433 140/500/1, 000
CiteSeer 3,327 4,732 3,703 120/500/1, 000
PubMed 19,717 44,338 500 60/500/1, 000
Air-USA 1,190 13,599 238 119/238/833
PPI 2,599 27,189 50 2, 050/297/252
DBLP 17,716 105,734 1,639 1, 772/1, 772/14, 172

for training. The Cora data in DGL have a different test set from
that of PyTorch, and we also present the test on Cora_dgl. For PPI,
we choose two of its twenty-four networks and treat them as one
large network. Summary statistics for each dataset are shown in
Table 2.

Baseline. We evaluate the performance of our proposed irreg-
lar networks by comparing them with several baselines. (1) Tra-
itional graph representation learning methods: Deep Walk [27],
P [28], and LNet [29]. (2) State-of-the-art GNNs: GCN [1], GAT [2],
GNN [13], and GraphSAGE [18]. (3) Power GNNs: SGC [5] or
AD [3] (their structures are almost the same, but theories are
ifferent).
Settings. All experiments on GNNs are performed based on the

ode and the parameters released by the corresponding published
aper. The results are averaged over 10 runs and 100 epochs
er run. For stability analysis, we repeat the above setting ex-
eriments 10 times for our random models and GCN, recording
he worst and best results. Unless stated otherwise, random
ttentions follow the normal distribution; RWN follows the
niform distribution; and all initial values are scaled via L2
ormalization. Additionally, the table cells of baseline records
re intentionally left empty if there is no relative report in the
riginal paper.

.2. Analysis and evaluation

Analysis of regular and irregular message passing. One cru-
ial question for message passing is, do we only need to study
he diffusion matrix of having good mathematical properties?
raditionally, that is what we do. Many Laplacian-based models
e.g., GCN and SAGE) are proposed as standard structures of GNNs.
ur work takes an opposite approach to design neural message
assing. The edge weights of RWN are completely random, but as
hown in Table 3, its best results are very close to those of regular
NNs; its worst results still
outperform most of the traditional methods (RWN vs. LP, LNet

nd DeepWalk), showing the robustness and superiority of the
ramework of message aggregation. Our original motivation for
WN is just to present the tolerance of GNN for irregular weights,
ut its behavior is surprising, and it achieves the best result on
ir-USA.
Compared with RWN, random attention can better show the

dvantages of irregular propagation. They integrate graph fea-
ures into edge weights in an unparameterized way, further re-
ucing the chaos of node movements. RAN and RMN achieve
imilar and, sometime, even better results than regular GNNs.
ompared with GCN, the best and worst results show the stability
f these two random attention models. It is noteworthy that ran-
om attentions perform slightly better than learnable attentions.
f considering the structure and training complexity, random
ttention is no doubt a better choice. This also indicates that
esearchers may attach too much importance to the parameter
earning of message passing.

When further comparing RAN and RMN, we find that stacking
andom attention layers and increasing model randomness does
ot degrade the RMN performance; it still achieves a similar
5

result as RAN. Clearly, these findings are hard to reconcile with
the claim that the performance gain of attention-based models
stems from their adaptive information selection. The graph topol-
ogy itself is, in fact, a very important but less studied factor in
message passing.

Nonlinear test. We also explore the importance of nonlin-
earity in GNN predictions. To keep passing messages only once,
we propose RWN+, RAN+, and RMN+ based on nonlinear skip
connections. As shown in Table 4, linear random models do
not work on PPI data. Adding activation functions and learnable
weights can greatly improve the model performance. RMN+ even
outperforms GCN and GAT.

Thus far, the effectiveness of random weights has been fully
verified. It is reasonable to conclude that the success of message
passing is not uniquely tied to these perfect aggregations. We
also view these results as an opportunity to encourage the graph
learning community to pursue a more generalized explanation of
message passing.

4.3. Ablation studies

Problem of data preprocessing. To the best of our knowl-
edge, almost all the experiments on PubMed in the literature
are performed without normalizing the data properly. The value
of PubMed ranges from 0.0 to 1.2633, and it should be treated
differently from one-hot or multi-hot data. Here, we normalize
PubMed features by min–max normalization and retest some
models in Table 5.

Compared with the performance record presented in Table 3,
all the models are obviously improved, especially SGC, GCN, and
RAN. The GNN example code in PyTorch uses L1 normalization.
Therefore, test L1, L2, and min–max feature normalization with
RAN. Table 6 shows that min–max normalization outperforms
all the other methods. The importance of data preprocessing to
models cannot be overstressed.

Distribution test. The distribution of initial random weights
ould be N(0,1) or U(0,1) . Table 7 lists the results of RWN
nd RAN on the CiteSeer network. The normal distribution seri-
usly degrades the performance of the RWN because of negative
eights. When taking absolute values, RWN behaves much better.
owever, RAN is not sensitive to the initial weight distribution
ecause the softmax structure of the attention mechanism keeps
he edge weight between 0 and 1.

Normalization test. Thus far, all experiments are done under
2 weight normalization, and it is time to check the effectiveness
f L1 and L∞. Table 8 shows that all Lp normalizations could
mprove the model performance on the CiteSeer network com-
ared with raw random weights. L1 and L2 perform better than
∞ normalization.
Attention norm vs. Edge weight norm. In RAN, we use atten-

ion normalization, and what if we change it to final edge weight
ormalization, similar to RWN? Table 9 shows that this approach
s reasonable. However, from the view of the computation com-
lexity, normalizing attentions is much more economic.
Extreme attention test. Here, we generate random attention

ith varying variances to see the performance change of RAN.
able 10 shows that random attentions are not sensitive to initial
alues. This once again confirms our claim that we do not need
o control graph attention.

.4. Why do random weights work?

Singular value visualization. The positive impact of normal-
zed random weights on message passing is not serendipitous.
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Table 3
Irregular propagation performance across previous methods on benchmark networks.
Table 4
Nonlinear test on PPI.

Table 5
Results on normalized PubMed.
GCN GAT RMN
81.3 ± 0.4% 79.8 ± 0.4% 80.4 ± 0.4%

SGC RWN RAN
82.0 ± 0.5% 79.6 ± 0.1% 80.9 ± 0.3%

Table 6
RAN feature normalization test on PubMed.
Pub_None Pub_L1 Pub_L2 Pub_min–max
78.9 ± 0.3% 79.3 ± 0.3% 79.5 ± 0.2% 80.6 ± 0.4%
79.2 ± 0.4% 79.5 ± 0.3% 79.7 ± 0.1% 80.9 ± 0.3%
6

Table 7
Distribution test of irregular weight.
Model Norm Uniform |Norm|
RWN 30.5 ± 1.3% 71.3 ± 0.4% 70.6 ± 0.9%
RAN 72.3 ± 0.4% 72.2 ± 0.4% 72.3 ± 0.4%

Table 8
Normalization test of irregular weight.
Model Raw L1 L2 L∞
RWN 68.3 ± 0.7% 71.4 ± 0.3% 71.5 ± 0.3% 70.0 ± 0.4%
RAN 67.0 ± 0.9% 72.3 ± 0.4% 72.4 ± 0.3% 67.0 ± 1.2%

Table 9
Attention norm vs edge weight norm.
Model Cora CiteSeer PubMed AirUSA

Att_L2 82.1 ± 0.8% 72.4 ± 0.3% 81.0 ± 0.4% 59.3 ± 0.4%
Weight_L2 81.9 ± 0.8% 72.6 ± 0.3% 79.9 ± 0.3% 56.0 ± 0.9%

To demonstrate this, we design the following four propagation
matrices of RWN:⎧⎪⎪⎪⎨⎪⎪⎪⎩

R1 = I + D−1A.

R2 = L2_Norm
(
Ä ∗Wu

)
R3 = L2_Norm

(
Ä ∗Wn

)
R4 = L2_Norm(Ä ∗ |Wn|)

(18)

where Ä = A+ I, Wu and Wn are uniform and normal distribution
weights, respectively.

For visualization convenience, we use the small Karate Club
network, which represents friendship between 34 members of
a university-based karate club. For each distribution, Wu and
Wn, we generate 1,000 random matrices and draw their singular
values in Fig. 3.

Observing the difference between Fig. 3(a) and (b), we find
that R is just the perturbation matrix of R . (Normalized) random
2 1
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Table 10
Accuracy of extreme attention test (%).
Data N(0,0) N(0,1) N(0,10) N(0,100) N(0,1000)

Cora 82.2 ± 0.6 82.4 ± 0.6 82.1 ± 0.7 82.4 ± 0.8 82.2 ± 0.7
CiteSeer 72.5 ± 0.2 72.4 ± 0.4 72.4 ± 0.4 72.5 ± 0.2 72.6 ± 0.5
PubMed 80.6 ± 0.4 80.5 ± 0.5 80.7 ± 0.5 80.6 ± 0.5 80.5 ± 0.6
Fig. 3. (a), (b), (c), and (d) correspond to the ascending singular values of 1×R1 , 1000×R2 , 1000×R3 , and 1000×R4 . Fig. 3(a) and (b) have highly similar fluctuations,
showing the stable similarities between R1 and R2 . However, the curves in (c) tend to be straight lines, resulting in severe information loss. After taking the absolute
value of R3 , the R4 curves in (d) present a similar bending as that in (a).
Table 11
Accuracy of random feature iteration.
Model Cora_300 CiteSeer_500 PubMed_1000

DA 75.7 ± 0.4%
k=20

52.7 ± 0.2%
k=40

76.8 ± 0.3%
k=50

RWN 62.4 ± 1.5%
k=15

42.6 ± 1.1%
k=15

76.1 ± 0.6%
k=15

SAGE 57.1 ± 2.9%
k=5

35.5 ± 2.4%
k=5

52.6 ± 4.0%
k=10

RAN 74.8 ± 0.4%
k=25

52.3 ± 0.7%
k=60

75.8 ± 0.7%
K=40

uniform perturbations do not change singular values too much.
However, the raw normal distribution weight R3 destroys the
riginal structure properties as shown in Fig. 3(c). In Section 4.3,
e have shown that taking absolute values of the normal dis-
ribution can help improve the performance of RWN, which is
onsistent with the trend in Fig. 3(d).
Analysis of iteration subspace. We perform the random fea-

ure test to explore the eigen-subspace of GNNs and list the re-
ults for the R1-based model (DA), RWN, and nonlinear
1-based model (SAGE) as well as RAN in Table 11. The optimal
umber of iterations k is chosen from 1 to 60.
For diagonalizable kernel R1, the increasing iterations send

he random feature vectors X to its eigen-space, where the clus-
ters are well-separated. Therefore, deep DA is highly performant
among all citation networks. For RWN, its subspace can be re-
garded as a rough version of DA eigen-space. These two linear
models perform much better than SAGE. During the training of
SAGE, the random features mislead the parameter learning and
aggravate the over-smoothing.

For RAN, we first use the meaningful features to compute the
aggregation weight and then run it with the random features. It
is difficult to judge whether the RAN aggregator is diagonalizable,
but it indeed forms an effective eigen-subspace. When setting
attentions to be zero vectors, RAN is equivalent to the model
DA. Looking again at the Extreme Attention Test in Section 4.3, it
suggests that there is no obvious difference between N(0,0) and
other distributions. Therefore, the RAN subspace is similar to the
DA eigen-subspace.

Taking all the results in Section 4.4 together, we conclude that
the effectiveness of message passing is not uniquely tied to the
well-designed propagation weight. Randomly passing messages

is also an effective aggregative process.

7

Table 12
Dataset statistics of OGB networks.
Dataset #Nodes #Edges #Features Train/val/test

ogbn-arxiv 169,343 1,166,243 128 54%/17%/29%
ogbn-products 2,449,029 61,859,140 100 8%/2%/90%

4.5. Generalization test of random attentions

The proposed concepts in this paper challenge the widely
used attention mechanisms in the research community. It

may not be convincing to test random attention only in our
proposed models, so we further design random attention models
for another six popular attention models ranked at the top of the
Open Graph Benchmark (OGB) leaderboard and test them on the
ogbn-arxiv and ogbn-products datasets [30]. Summary statistics
for each dataset are shown in Table 12. All experiments in this
subsection are performed based on the code and the parameters
released on the OGB leaderboard. The results are averaged over 5
runs and 2,000 epochs per run.

Generalization test on ogbn-arxiv. We choose the three most
popular attention-based models on the OGB leaderboard:
GAT+Norm [31], DRGAT [OGB Leaderboard], and RevGAT [32].
GAT+Norm uses the symmetric Laplacian matrix in GCN to nor-
malize the attention edge weights produced by GAT; DRGAT uses
RNN to model the residual evolving pattern between layers; and
RevGAT generalizes reversible residual connections to grouped
reversible residual connections for GAT. Their corresponding ran-
dom models R-GAT+Norm, R-DRGAT, and R-RevGAT are simply
constructed by replacing their learnable attentions with normal-
ized random attentions. Moreover, some of the above models use
GIANT+XRT [33] to augment the input graph features.

As shown in Table 13, the performance of random attention-
based models is similar to that of learnable attention models.
The added randomness has no hits to stability. Random atten-
tion works well with complex components such as RNN resid-
ual connections (R-DRGAT) and reversible residual connections
(R-RevGAT)

Generalization test on ogbn-products. SAGN [34] and its
variants [35] are currently the best models on the OGB leader-
board for ogbn-products. SAGN keeps the message passing linear
and hypothesizes that the intermediate representations are infor-
mative. Diagonal attentions are used to integrate these multi-hop
node features into the final prediction.
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Table 13
Generalization test of random attention on ogbn-arxiv.
Model Val acc(%) Test acc(%)

Records from OGB
Leaderboards

GAT+Norm 75.16 ± 0.08% 73.91 ± 0.12%
GIANT-XRT+DRGAT 77.16 ± 0.08% 76.11 ± 0.09%
GIANT-XRT+RevGAT 77.01 ± 0.09% 75.90 ± 0.19%

Our
experiments

GAT+Norm 75.08 ± 0.08% 73.98 ± 0.16%
R-GAT+Norm 75.06 ± 0.06% 73.93 ± 0.07%
GIANT-XRT+DRGAT 77.09 ± 0.05% 76.00 ± 0.24%
GIANT-XRT+R-DRGAT 77.14 ± 0.05% 76.04 ± 0.08%
GIANT-XRT+RevGAT 76.92 ± 0.10% 76.17 ± 0.17%
GIANT-XRT+R-RevGAT 76.89 ± 0.12% 76.10 ± 0.10%
Table 14
Generalization test of random attention on ogbn-products.
Model Val Acc(%) Test Acc(%)

Records from OGB
Leaderboards

SAGN 93.11 ± 0.05% 81.28 ± 0.12%
SAGN+SLE 93.09 ± 0.07% 84.68 ± 0.12%
GIANT-XRT+
SAGN+MCR

93.89 ± 0.02% 86.51 ± 0.09%

Our
experiments

SAGN 92.40 ± 0.02% 82.52 ± 0.23%
R-SAGN 92.30 ± 0.04% 82.73 ± 0.18%
SAGN+SLE 93.0 ± 0.06% 84.55 ± 0.08%
R-SAGN+SLE 92.87 ± 0.10% 84.53 ± 0.04%
GIANT-XRT+
SAGN+MCR

93.90 ± 0.05% 86.50 ± 0.06%

GIANT-XRT+
R-SAGN+MCR

93.87 ± 0.02% 86.55 ± 0.05%

SAGN+SLE, and GIANT-XRT+R-SAGN+MCR are still highly per-
ormant. This no doubt improves our understanding about the
ttention mechanism.
Additionally, most experiments in this paper study the atten-

ions constrained by the graph topology. The difference here is
hat the attention in R-SAGN is used as a feature selection tool,
hich enlarges the application of random attentions.
Dynamic random attention test. We vary the variance of ran-

om attentions and hold learned parameters constant, running
,000 times, to observe the performance change. Table 15 shows
hat the well-chosen pretrained R-RevGAT achieves an accuracy
f 76.40%. After replacing the initial random attention with ex-
reme values, the performance of R-RevGAT (or FR-RevGAT) is
till very stable and close to that of SOTA—76.33%. Therefore, the
andomness of attention has a negligible effect on performance as
whole. The next logical question is: there must be some ‘‘bad
ttentions’’, how can we filter them out?
First, looking again at Tables 13 and 14, the results of learnable

ttention models are not constant, meaning that the so-called
‘bad attentions’’ are normal to some extent. Second, the results
f ‘‘bad attentions’’ are not as poor as expected. As shown in
able 16, we choose some random attention from the above
rozen R-RevGAT (or FR-RevGAT) test as the attention values of
tandard R-RevGAT. The performance of R-RevGAT is still satis-
actory compared with the results reported in Table 13. Third,
f attention must be determined, trying different attentions with
he trained models is not truly time-consuming. Training models
ith different initial random attentions is also feasible.

. Conclusion

We conduct extensive experiments to show the high tolerance
f GNNs for irregular edge weights. From the geometric view,
odes could move irregularly along the graph topology toward
heir neighbor centroids, producing recognizable communities.
he exact nature of the data and the form of random weights
ill affect the quality of communities. We dedicate a significant
8

Table 15
Dynamic randomness test on ogbn-arxiv.
Model Input N(0,0) N(0,1)
FR-RevGAT 76.40% 76.36 ± 0.0% 76.22 ± 0.15%

Model N(0,10) N(0,100) N(0,1000)
FR-RevGAT 76.23 ± 0.15% 76.22 ± 0.16% 76.23 ± 0.15%

Table 16
Bad attention test.
Model Input1 Input2 Input3

FR-RevGAT 75.87% 76.16% 76.23%
R-RevGAT 76.14 ± 0.08% 76.14 ± 0.22% 76.10 ± 0.08%
Best run 76.23% 76.50% 76.24%

portion of this paper discussing random attentions, trying to
prove that graph nodes, constrained by the topology, do not need
to control attentions. Moreover, we propose the concept of an
eigen-subspace for GNNs to better analyze the structural property
of their aggregators.

For future work, it is worth exploring the effectiveness of
random attentions in more complex models such as Transform-
ers [36] and ViT [37] as well as more practical applications such as
human–object interactions [38] and drug property analysis [39].
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